> Sun

microsystems

Fortéfor Java
Community Edition 1.0

Java Integrated Development Environment

User’sGuide

Documen tation version 0.9.4

Copyright © 1997-1999 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, CA 94303, U.S.A.
All rights reserved. This software is distributed under licenses restricting its use, copying,
distribution, and decompilation. No part of this software may be reproduced in any form by any
means without prior written authorization of Sun and its licensors, if any. Third party software,
including font technology, is copyrighted and licensed from Sun suppliers. Sun, Sun Microsystems,
the Sun logo, Solaris, Java, JDK, JavaBeans, Forte, and NetBeans are registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries. UNIX is a registered trademark in the U.S. and
other countties, exclusively licensed through X/Open Company, Ltd.Federal Acquisitions:
Commercial Software — Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED
CONDITIONS, REPRESENTATIONS AND WARRANTIES,INCLUDING ANY IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH
DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Contents

Preface..uuuuiiiiiiiiiiiiiiiiii e 11
AUAICIICE oeiiinttnnriiiiiiiiiiiiiirrre e e s s e e s s s a b b s s s e s e e e s e s baanaee 11
Conventions Used In This DOCUMENTueeveiiiuiiiiiiiiiiieiniiiiiecniiieeeneeeeeneeeeennneeeens 1

LOOK aNd fEEL....cviiiiiiiiiiciciicci s 12
Contact INformationeieeiiiiieiiiiieiniieecieeecire e asa e s naae s 12
Online TechNical SUPPOLL ...c.oviuiiiiiiiiiiiiie s 12
FOLUM 1ottt s 13

U S0 Y 13

Virtual MaChINes ..o s 13
Contacting Technical SUPPOLt ... 13

Chapter 1: Welcome to F orteO for]avaé Community Edition 1.0 14
New in Forte for Java Community Edition 1.0.....uuiieiiiiiiinniiiiiniiiienniineecnnnneeennnes 15
Other changes since DevelOPer 2.Xuuiiiieiiiiiiiiiiiiiiieieiiinniniieeeeeeeneeneneeeeeeeeeseennnnns 16
DOCUMENT OVEIVIEW ..euririiiiiiiiiiiiiiiiiiteeeiiiiiiiititteeeeeteeiistataeeeeessssssssssssseessssssssssssssssssssssses 17

Chapter 2: INStallationeeeeeeieeiiieiiiieiiiiiiiiiieseeeeeeeeeeeeeeeees 19
SYStem rEQUITEIMEILS .ueeiivirrreiiiiiirreeiiiitreeeiiiiteeeisisaeeeisssseetsssssseesssssssesssssssessssssssessssssnees 19

Intel 80X80 PIAtTOLMSuvivieiiiiiiiiic s 20
SPARC/S0Iatis PIAFOLM ..cuceueeieiecinicieieicieieieerie ettt 20
INOLES fOI LINUK USEIS.ouiuiiiriiriiieiiiiiciiiciesiie ittt s st snaes 20
Installation fOrmMatS.......iiiiiiiiiiiiiiiiieieiiicteee e aaaee e e e e e e s s saaaaaseesesesnes 21
Installation procedures for Single USErS.......ccvieeiuieeiitieiiitiiiiiieentteenteeeeee e aae s 21
Multi-user iNStallatioNsuuueeeiiiniiii e 23

Chapter 3: Quick Tour and Tutorial.......cccovuueeiiiiiiiiinniiiiiiiiiiiniinieeennneen 24

The Main Window and EXPIOrer......couuiieiiiiiireeiiiiiieeiiiiieeiniieeeennneeeesnsseeesmsseeesnnes 24
JavaHelp, context help, and tOO] tIPS.....c.ccviuviiiiriniciiiiiiiiicree e 26
Creating @ PrOQIAMuiicciueeeeiueeeeiieeeiteeeiieeeiteeeiaeeesteeseseeeeseeeessssessssssssssesssssessssessssseens 27
Creating @ PACKAZEc.cuviiiiii s 27
Creating @ Class ..o 28
Setting a layout MANAETcccviiiiiiiiiii e 29
Adding components and setting thelt PLOPELTIESccvwieeviiriieriiriciiiniieniresiees e eseeseseaes 31
Automatically generating event COAEcviiiiiiieee e essesesnaes 34
Adding event handler COe.......oviiiiiiiii e 36
Compiling and running your ProOGraml.......cccccuveierriiierriniemiunisieesiesessiieessssesessssesessiseesessssesenns 37

Chapter 4: Developing Java Applicationsccouueeeveiiiiniiinnnnnnnnnnnnnnneeneeeeeeeeeeeenn, 38

The Explorer and its Property Sheet Paneceovueeeeiiiniieeiniiieeeennineeenneeeeennseeeennnes 38
Creating NEW ClASSES ...cciinuiiiiiiiiiieiiiiieeeinieteeneeecnaaeecsssse e e s ssseeesssssaseessssssessssssnees 39
Adding a file to the IDEccoiiiiiiiiiiiieiiiiieciietecniee e csneee e asseesssssaeesssanns 40
Editing JAVA SOULCES «..eeeeeiiiiiieiiiiiiieiiiiieeeeiiieeeeniieeeenieseecssssseesssssseessssssssessssssasessssnns 41
The Editor and 1tS JaTOUL ..c.c.ciciieiiirirrcccicietetee ettt nenes 42
Integration with other COMPONENLScviuiiiiiiiiiiic e 42
EdItOr SETUNESecvuieiieiieieecie ettt 42
Compiling JAVA SOULCES ..ueveeiiiiuiieiiiiiiieiiiiieeeniireenteeeeiseeessssseeesssssseesssssasessssssseses 43
Compiling SINGIE CIASSESvviuiiiiiiiiiii s 43
ComPpPiliNg PACKAGESccvuviieiiiiiiiiiiciir s 43
Deleting .€lass fIlES.......ciuiiiiiiiiiiiiii s 44
SWiItChINg COMPIIETLScviviiiiiiiiciiii e 44
Disabling compilation fOr @ Class........coiiiiiniiiiiiciiiiiiic e 44
Configuring COMPIIETS......cucviiiiiiiiiiiiiiiei st 44
Running Java Classesccciiieiiuiiiiiiiiiiiiiiiiiiiiiiceecccntieeeeeececsreree e e ee s aaaaae e e s e s s aes 45
Execution categories and EXECULOLSccvcuiieriiiiiiiiierieies it s s sessseesnas 45
SEttING EXECULION ..cuviviiiiitci bbbt 46
Disabling eXecution fOr @ CIASS ..o 47
Configuring eXternal EXECULOLSciiviiiiiiiiiiiiiic s 47

Passing command-line arguments to executed appliCAIONSc.cvveueeiirieiireiireniieeiecececeeeanne 47
Execution Settings NOAEvucuiuiieiiiiiciiieiccicic e 48

APPLEt VIEWET SELLIZS ...eveviieiriaieciiiiicieiiseiessistie ettt bbb s st ssseaesnaes 48
Debugging Java ClassSes ...cccccveuuuiriiiiiiiiiiiiiiiiiiieeeeinniieeeeeeecesseraeee e eee s aasaaeeesesseenes 49
Debugg@er WINAOWciuiiiiiiiiiiiiii s 49
BIEaKPOINLS ..ot 50
TRICAAS .t 51
WALCRES e 52
FIXEA WALCRES ..ot 52

The debugging SESSIONcuviiiiiiiiiiiiiii st 53
Suspending and resuming debUGEING ..o 53
Changing the curfent thread ... 54
Connecting the Debugger to a funning PrOCESSccuvuiiuiirieiiniiiiiiriiieeiieesiesessisseesseesenns 54
Setting the debDUGEETviiiiiiiiic e 54
Disabling debug@ing for @ Classcoceiviiiiniiiiiiiiiiie e 55
Configuring debDUZEELS ..o 55
JPDA DEDUZEET .uuuneriiiiiiiiiiiiiitittieececcccteteee e ttaae e e e e se s aaass s e e s e s s s s saaaaaeeeesesnns 55
Installing JPIDIA (..o 56
Setting the JPDA DebUZEZET ..o 56
Additional JPDA debugging featuresccoeuviiiiiriiiiiiiiiiiiieiiciieeiseiseseiseseenaes 56
ODbJECt BIOWSET «.uuuvnriiiiieiiiiiiiiiiiiittieeteiiiiiititeeeeeecesesttaaseeeeeesssssssssssseesesssssssssssssseesesssnnes 57
Using the ODbject BrOWSET ... 58
Creating package fIlEErSciiiiiiiiiiiic s 59

Browsing and exploring objects and their elementsccccouveeeiuieeniieeniieenineeniieenneeenne 60

Elements of Java ODJECES......cvuiiiiiiiiiiiiiiic s 61
MEMDBEL ACCESSIDILEY ...ovuvreeereriiecieierriicieterse et n st se s et senens 62

SOULCE SYNCHIONIZATION ...ttt ettt 63
Source Synchronization property Sheet. ... 64
SYNChIONIZING SOULCE ..vuviiiiiiiiiiiiiiic et 64
Developing]avaBeansC) COMPONENTS.cerurrrrrrrrrrrrrrrrrrtrttttttttttttttttttttmtmtsstsssss.. 65
Creating PIOPEITIES wucuuviviiiiiiiiiiiiiicici ettt bbbt a s aenes 66
Creating indeXed PIOPEITIES ...cvuviiuiiiiiiiiiiiiciie st 67
Creating EVENT SELS ..ottt 67
Generating Bean INfo ... 69
Bean INfo NOAE ..viiiiiccc e 70
Properties and Event SOULCes NOAESccuiuiiiiriiiiiiccce e 70
Subnodes of the Properties and Event Sources 00des ... 70

Editing BeanInfo SOULCE......ccuiiiiiiiiiicicicicec e 71
Regenerating BeanInfo ... 71
Customizing JavaBeans COMPONENLS........uueeeiiiiireiiiiiiieenniireeniieeenieeeesssaeeessssseeenes 71
Adding and modifying ServiCe tyPescceceruieeiiueiiiiuiieiitiieiireeniteecieeeeee e 72
AddING SEIVICE LYPES oueiviiuieiiiiiiiiiiiieieiieiettie sttt sssans 72
CoNFIGUIING SEIVICE LYPES..euviiuiuiiriiiriiiieieiiieiet ittt sssees s 74
Process Descriptor PrOPErty €dIOLcuiuuieiuieiurieiieiiieiieeiiieiiie e 74

Editing service types from the RePOSILOLYc.ovcuviuiiieiiriiiriiciicriciiceeese e 75
ReEMOVING SEIVICE LYPES..uviiiiiiiiiiiiiiiiiiiiii bbb 76
Searching JAvVAdOC.....uueeiuiiiiiiiiiieiiieecneecee e e s aaa s 76
Preparing the Javadoc RepOSItOry ... 76
Searching in Javadoc dIFECLOTIESoviiuiiiiiiriiiiciiici e 77
SEarCh dIAlog......ouviiiiiiiciiic s 78
Using Javadoc Auto COMMENTcceiuiiieiiieiiieeeiieeenieeenieeeeiteeesiteeeesseeessssesssssssssssessssseses 79
Auto Comment TOOl dIalog......c.cceiiiiiiniiiiiiiiii e 79
JavaDoc Comment dialog........c.cuviuiiiiiiiiiiiiciiicece e 80
Generating Javadoc doCUMENtAtioNuuiieiieiieiteeieitteeeiteectteeeteeeeee e e e e ae e saaeeesaaeeenns 82
JavaDoc MOdule PrOPELHIES......c.cuiiuiiiiiiiiiici s 82
Changing the directory for generated Javadoc documentationccccvecevvivcciviniieenrinceennn. 83
Chapter 5: Developing Visual Classescccevviiiiiiiiiiiiiiiiinnnnnnnnnnninnineeeeeeeeeeeeens 84
Designing visually with the Form Editorcouviiiiiiiiieiiniiiiiiniiiieinineecnneneecnnnne. 84
Opening the FOrm EdItOrcccuiiiiiiiiiiiiiiiiccese s 85
Creating @ NEW fOIM . ..c.iiiiiiiiiii e 86
Working With COMPONENLSciiiiiiiiiiiiiiiii s 87
AddING NEW COMPONENLS....cvuiuiiriiiriieiiieiieciisetsiete sttt saseeaas 87
SeleCtiNg COMPONEILS ...ouiuiviiiiiiiiiiii et 88
COoNNECHON MOME ..ottt 89
COPYING COMPONEIIES ..uviiuiviiiiiiiiiirt ettt 89
Reordering COMPOMENTScucuiuiieiiiciecieccie e 89

Property Sheet pane in the Component INSPector ... 90

Custom property editors for COMPONENT PLOPEITLIESvuurriumeeiirieemiieeiieisiieniaenseseieessieesseesseesseaenns 90
Reverting to the default value fOr a PrOPErtYcovcvieiiiiiiviiiiicccee e 91
Working With JayOuts........cccciviiiiiiiiiiiii e 91
Setting and changing layout MANAZELS.c.ccuvvieeiieeiieirieicre s 92
Setting layout properties and CONSTIANLSc.vvvevieevieeirieeirieiricieeieeee et 92
Standard Jayout MANAZELSv.cvieiiriieiiciie et 94
Using the GridBag CUSTOMUIZELviuiiiiiieeiiciiciiciriietie ettt 97
Support for custom layout MANAZELS......ccuiviiiiririiiiii e 99
Working with SOULCE COAC ... 99
Non-editable BIOCKSc.ccuiiiiiiiiciiccccc e 99
External MOdIICAIONSc.vviuiiiieiieciiciccirice s 100
Form Bditor MOAES ..o 100
BIVENES ottt 101
Using the Connection Wizard........ccceiiiiininiiiiiiiiicniieieeesise s sessans 104
Using the Form Connection property €ditor.......ouuiiireiiiniiiiieriiieieiieisisissessiseesesssesennens 106
Pre- and post-initialization COAE......ouvuimiiiiiieiiicicc e 107
SYNNEC PLOPEITIES .ueeiviiiiiiiiiiiei s 108
MENU EAILOT .ttt 108
Creating 2 MENU DAL ..o 108
Adding menus to the MENU DAL ..o 109
Creating 2 POPUP MICNU c.uvviiiiiiiiiiicite sttt s 109
AddING MENU ILEIMS .ottt 110
MENU ILEIM EVEIIES wuuviveiiiiiiiiiicieie et 110
Components with Special SUPPOLT.......ccccuviiiiiiiieiiiiiiiieie e 110
JScrollPane, SCLOIPANEc.ciiieiiiiiiie e s 111
JTADDEAPANIE ...ttt et 111
JTADLE, JLLIST euevvrirceciererrieicieteneecie ettt et s st n e n st 112
MDI Applications: Using JDesktopPane and JInternalFrames.......ccccoocveeivvicnicenicnicnicncnnn. 112
JSPHEPANE .. 113
Adding JavaBeans to the IDEcooniiiiiiiiiiiiiiiiieiiieentreccneeecnnee e 113
Standard method for adding JavaBeans ..o 113
Alternate method for adding JavaBeans..........cccceviiviiiiiiiiiiiniiiiccceeeaas 114
Automatic MEthOd ... 115

USer iNtEIfaCe cuvviiiiiiiiiiiiiiiieeccccttetceccttee e e e e 116
Main WINAOW oo 117
The EXPLOTEL ..ot 118

INAVIGATION 1ottt bbbt 118
EXPLOLEL tOOIDALviiiiiiiiccc e 119
Default OPerations ... 119
Property ShEet. ..o 119
Accessing the PLOPELLY SHEET ...ttt 120
Contents of the Property ShEet ... 120
Property Sheet tOOIDAL ..o 121
CUSLtOM PLOPELLY EAILOLS.c..eevuieeriieiiecieiaeieiiie it naes 121

BLIEOT et 122

Opening the Editor and navigating from tab t0 tabccccoccuvciiniiiniiinicnccrccccccne 123
Mouse and clipboard fUNCHONSc.ouiueiieeiicicirc e 123
Editor keyboard ShOTTCULSc.cueiiicicreiiccterrcce et nene 124
Customizing Editor keyboard ShOTTCULScovcuviiiiiiiciiciiciicicceee s 125
Editor abbreviations ... e 125
FINd A0d TEPIACE ... 125
Java code COMPIEIONvuiuiiiiiiccccc e 126
FOrm BEdItOr .. 127
Debugg@er WINAOW ..ot 127
EXECUON VIEW ..ttt 128
OULPUL WINAOW et 128
WED BIOWSET .ottt 129
Window mManagement.......ueeeeiueeeeiieeeeieeeeieeeeiteeeiaeeeiseeesisesessssesessssssssssssssssssssssssssssssnns 130
WOLKSPACES ..ttt 130
Standard WOLKSPACESc.cuiiiiiiicccc s 130
USING WOTKSPACES w..vuviiiiiiiiiiici et 131
Multi-tab WINAOWS ...cvuieiiiiciici s 132
Undocking and docking WINAOWS ... sessens 132
URAOCKING ..ot 132
DOCKING ..ot 133
ClONING WINAOWS «.vuvuiiiiiiiiiiiiiciii bbb sa e 134
Modules in Forte for Javacuiieiiiiiiiiiiiiieeciieecciieeccneecnineeeneee e 134
Managing MOAUIES ..ot 134
AddING MOAUIES ..o 135
Uninstalling MOAULEScccuiiiiiiiiiii s 135
EXPlOLing ODJECtS cocuuuniiiiriiiiiiiiiiitiitiieeeeecntiiee e aasee e e e e s se s aasass e e e s e s s e s snssaaaeees 135
REPOSILOLY cuvviiiiiii bbb 136
File systems and the class Pathccoiiiiiiiciciccee e 136
Mounting file SYStEMS COTTECHIY ..ucuimimiiiiiiiiiiiiiiiic e 136
Order Of fIle SYSTEIMIS cuvuvmiuieieriieieierreiciete et s sttt et s st nsaseacaenens 137
Working With PACKAZESccciiiiiiiiiiiii 137
WOTKING WIth ODJECES oueviieiieiiiicicccc s 139
RUNTIMIC 1.ttt 142
PLOCESSES cuuviiiiiiict s 142
DIEDUGEZET ... 142
PrOject SETHNGS ..cviiiiiiiriiiiii 142
ReEPOSILOLY SCLLNGS c.uvuiviviviiitiiiiiii s 142
DebUZEET SELLNGS.....vuveviieiiiiieiiee it 143
EdItOr SETHNES ...cevuvevieiiieieiiieiiciictsiese ettt 143
EXECULION SELHNGS ..vuvuiviviiiiiiiciiiic bbb 143
FOLM ODBJECLS w.vuvuiiieiiiiiiiciiei e 144
HTTP SEIVET woviiiiiiiiiiicicisiiicecss sttt 144
JAVA BLEMENLS ...vviiiiiiiiciieccc ettt 144
JAVA SOULCES ..ttt es 144
ODBJECt BIOWSET ..ottt 144
OPen FIlE SEIVEL .ot 144

OULPUL WILAOW ..ot 145

PIINE SELLNGS 1.viiiiviiiiici s 145
PrOpPerty SHECt....ccuiviiiiiiiiiiccc e 145

SYSEM SELLNGS.c..viuiuieriiiiiirt et 145
WOLKSPACES ..ot 145
COMPIIET TYPES ..viiiiiriiiiiiiii bbb 145
EXCCULOL TYPES ottt 146
DEDUGEZET TYPES cecvueiieiiiiciiicii ettt 146

GLODAL SELLNES ..ot 146
AACHONS ettt 147

MENU ittt 147
TOOIDALS ..ot 147

SEALTUP covviiicici s 147
TEMPIALES ..o 147

ODBJECE TYPES orerrieerieiieieistieicie ettt naes 147
MOAUIES . 148
Component Palette.o s 148
BOOKMATKS ..o 148

USING tEMPIALES .eeeieeniiiiieiitieeeteeee et aa e e aa e e e 148
Creating new objects from teMPIALESccceuviviiriiiiiiiiiiii s 148
Other tEMPIALES ...c.vieieiiiiiciiic s 149
PACKAGE ..t 149
BoOoKMATK ... 149

GIOUP ottt 150

HTIML Lo 150

TTIEXE ottt as s 150
Creating your OWN teMPIALEScuoviuiviiiiiiiiiiiii e 150
Modifying existing teMPIALESc.cvvuivviiieiiiiiiiiiicieiiie et 151
Customizing the enViroNmMENtccuiieiiiiieiiieeiiieeeieeee et ee s ae e e saae e aaeeesaaeees 151
Customizing menus and tOOIDALSccceuviiuiiiiiiciiiiiii e 151
Changing commands in menus and tOOIDALScoiuviiireiiiiniciiccc s 152
Creating new menus and tOOIDALSc.viiiiiiiiieiicic e 153
D1agging tOOIDALSvuvieiiiiicicccc e 153
Toolbar context menu and toolbar CONFIGUIATIONSviueieeiieciiiiricieiiieieieree e 154
CUStOMIZING SNOTECULS.....cvviieiiiiiicicci s 154
Customizing the Component Palette.........cocoeuviimiiiiiiiiiiiiiiecceeesse s 155
CUuStOMIZING WOLKSPACES ...cvuvuieiiiiiiiiiiiiiiiti et 156
Opening files from external ProCeSSESuuiiiiiiiiiiiiutitiieeiiiiiiiiitittieeeeeceereeeeeeeeeeeenaanns 157
Appendix A: Default Keyboard Shotrtcutscoccueerrnnieiiiieieieeiieiiiiiiniiiinnnne. 160
Global ShortCut KEYS ..ccccvuuriiiiiuiiiiiiiiiiiiiiiiieeiniiieeniieecnsineeecssssseeessssssesssssssesssssnnes 161
Form Editor Shortcut Keys.....oocvuueiiiiiiiiiiiiiiiiiiiiieiiiiiecniinecsineeesneeeesssneeeessnsnees 161
Editor ShortCut K@YS.....cviiniiiiiiiiiiiiiiiiiiinitiieecnineecniieeeeneeeecssneeessssnseeessssasesssnnns 162
Explorer ShortCut KeYSs ...ccouuuiiiiiiiiiiiiiiiiiiitiiieeniieecnieeecniineecsneeecssnneeeessssasessssnns 166

Window ShortCut Keys.....cuuuiiiiiiiiiiiiiiiiieiiiiiieeiiiiecciiee e essssaseessssseeees 166

Build Shortcut Keyscooiuiiiiiiiiiiiiiiiiieiciiieeniieecnnieecsineecsssnseeesssneesssssssessssssnnes 167
Debugger ShortCut Keys.....uuiiuiieiiiiiiiiiiiiiieiiiiieeiiieeeniieecnnseeesssseesssssssesssssssnes 168
Appendix B: Default Java Editor Abbreviationseeeeeeeeeeeeeeiiiiiiiiiiiiiinnnne. 169
Appendix C: Main Window Menusccouuvevvinnnnmmnnnniinieiieeeeeeeeenne. 172
IMENUS «euuunniniiriieieiiiiiiiitittteeeeeeeesttte et e ee e e e s e aataaaeeeeese s sssssaseesessssssssssssaeessesssssssssssnaeees 172
FAlE IMLENU 1.ttt 172
Edit MENU oottt 173
VIEW IMENU ..ottt bbbttt 173
BUild MENU.....cviiiiiiiiiic s 174
DEBUG MENU ...ttt 175
TOOIS MENU.....oiieitiitcttict st 175
WANAOW MENU ...ttt 176
HEIP MENU ..t 176
TOOIDALS c.euvrrieiiiiiiieiiitieecctee et e e e as s e e e s aa s e e e s aa s e e s s s aa s e s s s aaneses 177
Appendix D: Reference Guide to Project Settingseeeeeeeeeeeeeeeiiiiiiiiiiiiinnnn. 178
Repository Settings referenCeuuiiuiiiiiiiiiuieeiiiiiieeiiiireecnrreeenree e esssseeeessssaees 178
Compiler types refereNCe . .uuiinuuuiiiiniiiiieiiiiiieeiireeere e essae e e saas s e e ssssanees 179
EXecutor types rEfEIENICE cuuiivrruuirriiiriiiiiiiittiiieeeeeiieiitee e eeeeseasaase e e e e e e e saaaaaeeseesseaes 180
Debugger types referencCettt 181
Debugger Settings referencecccveeiuiiiiiuiiiiiiiiniieeeiieecte ettt naae s aaes 182
Editor Settings referenCecouiiiruieiiiiiiiiitiiiititenteccee et naes 182
Global EdItor SELHNGSc.cuviiiiiiiieiiiiiiieiiciessisie sttt ssssse e ssenenas 182
Editor settings by type Of €dItOrcccviiiiiiiiiiiiiiiicie e 182
Text types available fOr COLOFING.......cciiiiiiiiiiiiiic e 184
Execution Settings referencCecuiiiiuiiiniuiiiniiienitieenieecteeete ettt e e aa e sane e naes 185
Form ODbjJects refereniCe ..uuuuumummimmmiimiiiiiiiiiiiiiiiiiiiiiiiiieeiieeiieeeeieeeeeeeeeeeeeeeeeeeeseeseeee.. 185
HTTP Server settings referenceuuuiiniiiiiiiieiiiiiniiienitecieecteecteeesneeee e caae e 186
Java Elements settings reference.....uiiinniiiiiiiiiiiiiic 187
Java Sources settings reference......ouuuieiniiiieiiiiiieiiiiii 188
SOULCE SYNCHIONIZATIONvuieieeeiiitetiei ettt 189
Object Browser settings referencCeuuuuiiuuiiiiiiiiiiiiiitiicecte e, 189
Open File Server settings reference. ... uiiiiiiniiiiiiiieniiiiiiiecteecrecteeceee e 189
Output Window settings reference......couuieruireinieeiiitieniiiieiiienieeccteeeeeeeenne e aae e 190
Print Settings referencCe.. .ttt 191

Property Sheet settings referenCe ...ouuuuieiiiiiireiiiiiiieiniiiieeniee et esaaaees

System Settings referenCeuuuuiiiiniiiieiiiiiiieiiiiieeneecre e

Appendix E: ACLIONS c.ccuvuuuuuuuiiiiiiiiiiiiiiiiiiiiiiinniiiiieeeeeeeeeeeeeesesssssssseeees

10

Preface

This book describes how to develop with and customize Forte for Java Community Edition 1.0.

Audience

This document is intended for software engineers who will implement]ava@ applications and
applets with Forte for Java Community Edition 1.0. It is assumed that the reader has a general

knowledge of Java. Java beginners can use this guide in conjunction with documentation for the
JavaO 2 Platform.

Conventions Used In This Document

The following conventions are used in the text:
i This font is used to denote

— items you can select in the GUI, such as buttons and menu choices
. Thi s nmono-spaced font is used to denote

0 Examples of Java code

0 File names

: Preface

0 Explorer nodes

e Meta-names (e.g. words like YourName), which describe the type of text to be entered rather than
the literal string, are ialicized.

“Press ENTER” means that you should press the Enter or Return key on your keyboard. Keys like
F5 and F9 refer to those function keys (also sometimes labeled PF5 and PF9). “CTRL” refers to the
Control key. A set of keystrokes joined with “+7, like CTRL+F9, means you should press the first key
(here, CTRL), hold it down, and press the second key (here, F9).

In listed source or command line code, lines indented from the previous ones should be entered on
the same line when typed into the Editor window or console. For example, the following should all be
typed as one line:

C\jdkl.2.2\jre\bin\java -jar "C:\Program
Fi | es\ Forte4J\ nmodul es\openfile.jar" -port 2121 "C\ My
Devel opnent\ com mycom Foo. j ava"

Look and feel

Depending on your platform, the appearance of your Graphical User Interface (GUI) may appear
quite different from the screenshots shown here. By default the IDE launches in the Windows look
and feel when running on a Windows platform, or the Metal look and feel on all other platforms.
Most screenshots in this document were taken using the Metal look and feel (though most shots of
the Main Window were made using the Windows look and feel. The look and feel can be set via the
View | Look & Feel menu.

Note: The Windows look and feel is not available on non-Windows platforms.

Contact Information

For the latest news and information, please check the NetBeans website http://www.netbeans.com/.

If you have any general queries about Forte for Java products and release schedules or would just like
to pass along your comments, please mail f eedback @et beans. com

Online Technical Support

If you're having problems with NetBeans, please make use of the following online resoutces:

12

: Preface

Forum

The NetBeans Forum is buzzing with discussion on all aspects of NetBeans Developer, from
technical support issues to custom extensions. The web-based format
(http://cgi.netbeans.com/cgi-bin/webx/) allows you to seatch past discussions and issues as well as
view conversations in a threaded format. As a registered user, you can customize your interface, mark
your messages, and add discussions to the Forum.

If you prefer to follow the newsgroups with a news browser, you can still do that as well. Visit our
Newsgroup Information page at http://www.netbeans.com/newsgroups.html to learn more. By
using these public forums, you have access to the whole of the international Forte for Java
community. The NetBeans Support Team reads and posts to these groups regularly.

The FAQ

Please check the FAQ (Frequently Asked Questions) list to find answers to questions you might have
regarding installation, startup, and running Forte for Java Community Edition. This list is updated
regularly as new issues come to light. The FAQ can be found at http://www.netbeans.com/faq.html.

Virtual Machines

Check to ensure that you are using a supported JVM (Java Virtual Machine). All known, working
JVMs are listed on the JVMs page of the website at http://www.netbeans.com/jvms.html.

Contacting Technical Support

If the FAQ and Forum do not address your questions, you can go to the technical support page of
our website at http://www.netbeans.com/supporthtml. There you will find a host of resources to
help you better use Forte for Java Community Edition. You can use the online Support Request form
if you wish to directly contact our technical support team. Please fill out all required fields on the
form. In particular, it is crucial that you provide your system information and log file. Without this
information the Forte for Java Support Team may be unable to handle your request.

13

Chapter 1

Welcome to ForteO for
JavaO Community Edition
1.0

ForteO for JavaO Community Edition 1.0 is a Java integrated development environment (IDE)
written in Java. Previously known as NetBeans Developer, Forte for Java is a cross-platform tool that
is fully functional for client and server side development. Forte for Java takes advantage of the
strengths of Java to provide you with a dynamic and responsive environment.

Forte for Java is modular. This means that the IDE functionality for editing, debugging, GUI
generation, EJB support, etc. is represented in modules that you can download and update
dynamically. Instead of waiting months for a new major release, you can upgrade the latest modules
from Sun Microsystems and our partners as soon as they are available.

Forte for Java is extensible in just about every way imaginable. Forte for Java has a complete set of
Open APIs that are available to our users and partners — the same set of APIs that our own
developers use to build Forte for Java. Partners and individual Forte for Java Community Edition 1.0
for Java users have already built tight integrations with UML tools, debuggers, and native editors.
Even complete new Java tools such as visual builders for industrial application domains can take

Chapter 1: Welcome to ForteO for JavaO Community Edition 1.0

advantage of a mature tool-construction platform!

Forte for Java is customizable. The GUI can be modified to become a reflection of your own
development style. You can adjust the look and feel and customize the menus, toolbars, Component
Palette, workspaces, and settings.

In addition to this Community Edition, Forte for Java also comes in an Internet Edition. Forte for
Java Internet Edition includes all of the features of the Community Edition and adds a host of others,
including modules to support development in RMI, CORBA, EJB.

New in Forte for Java Community Edition 1.0

Forte for Java Community Edition incorporates a wide range of new features since the release of
NetBeans Developer 2.1 X2, including the following:

Object Browser

With the Object Browser, all of your sources are logically presented in one streamlined view. You can
view your applications by package, object, and member (or Bean patterns), as well as apply filters to

customize what is displayed. Using context menus in the Object Browser, you can open files, access

their property sheets, compile and execute applications, and more.

New Editor features

The Editor has many enhancements, such as:

* Java code completion

* awider selection of keyboard shortcuts and abbreviations, which you can now easily edit
e line numbering

* bookmarks

In addition, you can set distinct configurations for the editing of Java, HTML, and text files.

Visual GridBag Layout customizer

Now the most complex standard Java layout manager is easier to use with Forte for Java’s GridBag
layout customizer. The GridBag customizer dialog provides you with a dynamic visual representation
of the components in their respective “grid bags” and gives you different ways of adjusting the
constraints (such as dragging, direct entry of values, and tool icons.)

15

Chapter 1: Welcome to ForteO for JavaO Community Edition 1.0

Update Center

The Auto Update feature allows you to connect to Forte For Java’s website straight from your IDE
and download and automatically install new and updated modules.

Source synchronization

The Java source synchronization feature will save you time by automatically generating all of the
implementation methods used by your source code.

Javadoc support

With the Javadoc module, you have access to Java API documents from within the API and can
automatically have Javadoc comments generated for your files.

JPDA Debugger support

Forte for Java supports Sun’s new JPDA debugger, which provides features such as variables on
watches and automatic setting of breakpoints on exceptions.

Printing

You can now print your source files and take advantage of a wide array of customizable settings to
control the appearance of the printouts.

Other changes since Developer 2.x

Besides the addition of new features, most of the changes since NetBeans Developer 2.x are internal
and won’t affect the way you work with the IDE. Users familiar with Developer 2.x will have no
problem jumping into Forte for Java and benefitting from its improved architecture, which allows it
run more smoothly and makes it easier to integrate new modules, whether supplied by Sun or a
third-party developer, or created by you. However, users of Developer 2.x should take note of the
following modifications.

Explorer organization

The biggest visible change in Forte for Java is the Explorer organization. The Repository node has
stayed intact, but the three other main nodes have changed.

16

Chapter 1: Welcome to ForteO for JavaO Community Edition 1.0
e Most of items that were under Envi r onment in previous versions now appear in G obal
Settings.

. Tenpl at es, which used to be one of the main nodes, is now under G obal Setti ngs as
well.

e The settings that previously appeared under Cont r ol Panel now appear under Pr oj ect
Set t i ngs along with other settings that can be configured by project.

e The newRunt i nme tab has been added to track all processes and connections, including running
applications, debugging, and advanced modules (such as the Jini Browser, RMI Registry, JDBC,
etc.).

Enhanced JavaBeansO Component support

The Bean Wizard in NetBeans Developer 2.x has been replaced by a series of dialogs available from
Explorer context menus which give you more options and wider control over the construction of
JavaBeansO Components.

Configuration for Compiling, Running, and Debugging

You can now set the compiler, executor, and debugger (along with their configurations) individually
for each file under the Execution tab of its property sheet. Under the Pr oj ect Setti ngs node in
the Explorer, you can specify which compilers, executors, debuggers are available (under the

Conpi | er Types, Execution Types, and Debugger Types nodes) and general
configurations for running (Executi on Set ti ngs) and debugging (Debugger Setti ngs).

XML storage of forms

In NetBeans Developer 2.x forms were stored in a binary serialized format, but in Forte for Java they
are stored using XML, making them more powerful and robust, as well as readable by humans and
simple scripts. When Forte for Java encounters forms that were stored in the previous format, it asks
you whether you want to convert the form into the new XML format.

Note: Forms stored in XML are not usable in NetBeans Developer 2.x

Document overview

After this introduction and the following installation chapter, this guide has four main chapters.

. Chapter 3 provides a quick tour of major components and features of the IDE's user interface,

17

Chapter 1: Welcome to ForteO for JavaO Community Edition 1.0
and demonstrates practical use of these features. This is a good place to start if you are using the
IDE for the first time.

e Chapter 4is a “how to” chapter, which provides an overview of developing, running, and
debugging applications using the Forte for Java IDE.

e Chapter 5 focuses on all aspects of visual development in the IDE.

e Chapter 6 provides a more thorough explanation of the parts and features of the Forte for Java
IDE and shows how you can customize it to best suit the way you work.

18

Chapter 2

Installation

This chapter describes installation of the Forte for Java Community Edition 1.0 IDE. Before
installation, please check the system requirements.

System requirements

The installation procedures themselves require a 1.2 Java virtual machine (JVM) installed on your
system to run successfully. If you do not yet have a 1.2 JVM, you should install one prior to running
the Forte for Java Community Edition 1.0 installation.

NetBeans Developer 2.1 is available for 1.1 JVMs. See the NetBeans website at
http://www.netbeans.com/ for more information.

Please check the NetBeans JVMs page (http://www.netbeans.com/jvms.html) for the latest
information on recommended VMs for each version as well as links to VM download sites.

Chapter 2: Installation
Intel 80x86 platforms

Hardware

Minimum configuration: Windows 95/NT: P133 processor, 64MB RAM, 16MB free disk space.
Recommended configuration: Windows 95/NT: P300 processor, 128MB RAM.

Note: If you have 64MB, you should set the batch file startup flag from - Xmx128mto -Xnmk64m

Software

Forte for Java Community Edition 1.0 requires a Sun-compatible Java Virtual Machine, version 1.2 or
later. The JavaO 2 SDK for Windows is available for download from
http://java.sun.com/products/jdk/1.2/.

SPARC/Solaris platform

Hardware

Minimum configuration: SparcStation 5: 170 Mhz, 96MB RAM, 16MB free disk space.

Recommended configuration: UltraSPARC 5: 270 Mhz, 128 MB RAM.

Software

Forte for Java Community Edition 1.0 requires thejavaé 2SDK, v. 1.2 for Solaris. The latest SDK is
available for download from http://www.sun.com/solaris/java/.

Notes for Linux users

The Linux JVM is more resource-intensive, so Linux users may want to have a higher memory
configuration.

At the time of this writing, a final version of Java 2 is not yet available for Linux. After some
configuration, Forte for Java Community Edition 1.0 will run under the current pre-release available
from http://www.blackdown.org/, although there ate some issues that can limit performance. Please
see the NetBeans website for the latest information.

20

Chapter 2: Installation

Installation formats

There are several different installation formats of Forte for Java Community Edition 1.0 available.
The software in each of these formats is identical; it is merely bundled in different InstallShield
formats for ease of use on different platforms. All formats require a 1.2 JVM already installed on your
system to install correctly.

Available formats are:

e fortedj.exe —astandard InstallShield Win32 self-extracting executable
» fortedj.sh —Unix executable

e forted4j.class —a]Java class installation (usable on all platforms)

For most platforms, there is a choice of installation format. The f or t e4j . cl ass Java installation
will run on any platform with a 1.2 JVM installed. If you are unsure which format to use, use this one.
A summary of recommended formats is given below:

. Windows 95 / 98 / NT: f ort e4j . exe
. Linux, Solaris, and other Unixes: f ort e4j . sh
. Other: fortedj . cl ass

Note: At the time of this writing, no 1.2 JVM is yet available for Macintosh or OS/2. Macintosh or
OS/2 users with a 1.1 JVM can currently run Developer 2.1. Check the NetBeans website for
more information on Developer 2.1 and the latest news on upcoming JVMs.

Installation procedures for single users

Here are instructions for each installation format listed above.

forte4j.exe

Double-click the f or t e4j . exe file you have saved to your system. This will decompress the
InstallShield routine, which will then launch. Follow through the InstallShield wizard dialogs. The
install routine will attempt to locate a 1.2 VM on your system; if it fails to locate one, you must
browse to locate one before continuing.

Once complete, you will have a shortcut to Forte for Java Community Edition 1.0 on your Desktop.
On your Start Menu, you'll also have a Forte for Java entry containing shortcuts to Forte for Java

21

Chapter 2: Installation
Community Edition 1.0, the READVE file, and the NetBeans website.

forte4j.sh

Note that the instructions in this section are only for single-user installations. To install for multiple
Unix users, see “Multi-user installations” on page 23.

Open a command prompt. Change working directory to the location where you've saved the
fortedj. sh file. Launch the installation as a non-root user by typing the command:

$sh fortedj.sh

Before decompressing, f or t e4j . sh will attempt to locate a 1.2 JVM on your system. A menu
listing any found, and the option to specify another VM, will be shown. Once one of these is selected,
it is used to launch the InstallShield routine. Follow through the InstallShield Wizard dialogs and
specify a location under your home directory as the installation directory.

Once complete, use the launch script net beans. sh in your installation directory to launch Forte
for Java Community Edition 1.0.

forte4j.class

Open a command prompt, and change working directory to the location you have the
fortedj.class file saved. If you have a CLASSPATH set, and it does not include the current
directory, you will need to add the current directory to your existing CLASSPATH. If you do not have
a CLASSPATH set, skip to the next step. To check whether you have a CLASSPATH currently set,
type set at a command prompt. If you see CLASSPATH listed, you have a CLASSPATH setting.

e To add the current directory to your CLASSPATH on a Windows machine, type:
set CLASSPATH=. ; “CLASSPATH%

* On a Unix machine with a Bourne-type shell (which typically gives a $ prompt), type:
CLASSPATH=. : $CLASSPATH; export CLASSPATH

* On a Unix machine with a C-type shell (which typically gives a %or > prompt), type this
command:

set env CLASSPATH . : $CLASSPATH
Next, on all platforms, type the following command (and note that you should not include . cl ass):
java fortedj

This assumes you have a 1.2 VM in your path. If you do not, you must specify the full path to the java
interpreter executable—for example:

22

Chapter 2: Installation

C\TEMP>C: \j dkl. 2\ bi n\j ava. exe fort e4j

This will initiate a standard InstallShield installation routine. Simply follow through the dialogs as
normal.

Once complete, use the launch script in your installation directory to launch Forte for Java
Community Edition 1.0. If you are installingf or t e4j . cl ass on a Windows machine, you will have
shortcuts for launching Forte for Java on your Desktop and under the Start menu.

Multi-user installations

Windows and Unix users may wish to create shared installations, such that multiple users may use the
same installation of Forte for Java Community Edition 1.0. Multi-user installations are particularly
useful for computer networks at universities.

For more information on multi-user installations, please check the following web page:
http://www.netbeans.com/docs/fags/multiuser.html

23

Chapter 3

Quick Tour and Tutorial

The Forte for Java Community Edition 1.0 IDE is easy to learn and use. By following the brief
tutorial presented in this chapter, you can quickly become familiar with the IDE’s main features, and
you’ll be well on your way to creating your own Java applications.

If you don’t already have Forte for Java Community Edition 1.0 running, start it now.

Note: This manual is not a comprehensive guide to the Java 2 Platform. For more detailed
information about Java, download the documentation that comes with your implementation
of the Java 2 Platform. For the Java 2 SDK, Standard Edition, you can download the
documentation directly from the Sun website (at press time,
http://java.sun.com/products/jdk/1.2/download-docs.html).

The Main Window and Explorer

A few moments after you start Forte for Java Community Edition 1.0, a splash screen will display as
the program loads. Then the Main Window will appear at the top of the screen with the Explorer
below it, as shown in the figure below.

Chapter 3: Quick Tour and Tutorial

Forte for Java Community Edition 1.0 at startup

M Forte for Java - Community Edition - Beta Version (Build 428)
File: Eciit Wiew Project Build Debug Tools Window Help

[EEEEDDIEDDOEEINEEREN G

| EE D [EEE] = [Al =])) E O S =R |
ﬂl Browsing | Running I Debuwl

B Explorer -[O] =]

BOOJLE

ﬂ Repostory
9 =3 Root of DiwnzippediBuildd28_ErtryiDevelopment
@ [| examples
@ [| tutorial
readme

Main Window

The left half of the Main Window is mainly composed of menus and toolbars for controlling the
IDE’s operation. The right half consists of a special toolbar, the Component Palette, where you can
choose objects to add to your visual forms.

Explorer

The Explorer is an object-oriented view of your whole Forte for Java environment containing these
four main tabs:

. Reposi t ory, which stores all files used and created in the IDE
e Javadoc, which stores all Javadoc documentation which you create in the IDE.

e Runti nme, which holds information on all current runtime processes, debugging, and any
external services and their connection to the IDE.

. Proj ect Settings, which contains nodes for compilation, execution, Editor, printing, and
other settings that can be applied to a project (multiple projects can be specified using the

25

Chapter 3: Quick Tour and Tutorial

Projects module)

. G obal Settings, which contains general state and configuration settings for the IDE not
specific to projects

Any of these main nodes can be expanded by clicking on the # sign. Each item found in the Explorer
also has its own popup menu which you can access by right-clicking on the node. The g icon on the
Explorer toolbar is the toggle switch for displaying the Property Sheet pane for the selected node(s).

JavaHelp, context help, and tool tips

As you are getting to know Forte for Java, you may have questions about certain parts of the IDE.
Forte for Java’s implementation of JavaHelp (with search capability) as well as its context help and
tooltips can provide answers to many of your questions.

JavaHelp

You can view the User’s Guide through a JavaHelp browser by selecting Help | Browse Online User 3
Guide from the main menu. The JavaHelp viewer is divided into two panes. The left pane lists topics
and the right pane provides the content of the topic selected in the left pane.

The toolbar at the top of the left pane has three icons which allow you choose what is shown in the
topics list. Clicking the first button displays the User’s Guide’s table of contents, and clicking the
second icon displays the index. The table of contents appears as a tree with expandable nodes and
sub-nodes.

To search the documentation, click the third icon and enter your search string in the Find field that
appears just under the icons. JavaHelp will search the entire User’s Guide for that string and then
present you with a list of topics pertaining to that string. You can then select one of those topics to
have its contents displayed.

Context Help

You can also obtain help for specific features of the IDE by pointing to a specific window, dialog, or
icon with the mouse cursor and pressing 1. You can obtain context help for menu items and nodes
(such as nodes in the Explorer and Debugger windows) by selecting the node and pressing FF1. For
menu items, hold the cursor over the menu item so that it is selected, but do not click or release the
mouse button to invoke the command.

Tooltips

Tooltips are panels with short text descriptions that appear when you briefly hold the mouse cursor
over a part of the IDE. They are particularly useful for explaining the use of tree nodes and individual

26

Chapter 3: Quick Tour and Tutorial

properties listed in the property sheet.

Creating a program

This section will walk you through the creation of a simple program using the visual features of Forte
for Java Community Edition 1.0. This program creates a window with a button that switches the
color of a panel when it is pushed.

Creating a package

First of all, youll need to make a place on the file system of your disk to store the files you’ll be
creating. When you create a Java program, you put it in a package. This is a group of one or more
related files that make up a working Java program.

We will create a package called col or swi t ch. Under the Repository, you should have a single disk
drive icon named for a directory in your Forte for Java installation. We’ll put the package there.

To create the package:

27

Chapter 3: Quick Tour and Tutorial

1 Right-click on the disk icon and select New Package from the popup menu.

@ Explorer [Root of D:\unzipped\Build_.. M[=]E3

SHERDORORE

g Repositary
9 (=3 Root of Ot tment
& | examp Explore from Here

@ |tutorisl| Refresh Folder

B readim

Compile

Campile Al

Build
Build All

Mewy Package
Mesw: Fraom Templlﬁe]

Remove From Repositary

Toaols]

Customize

Propetties

—‘ @ Repositary L @ Javadoc L E Runtime

<% Project Seftings Lﬂ Zlobal Settings |

2 In the dialogue that appears, type col or swi t ch and click OK.

If you expand the disk drive icon, you should see your new package as a folder icon.

Creating a class

Now we’ll create a class to put into the package. We’ll use a JFrame, which is one type of container (a
visual component that can hold other visual components).

To create the JFrame:

1 Right-click on the col or swi t ch package and select New From Template | SwingForms | JFrame

28

Chapter 3: Quick Tour and Tutorial

from the popup menu.

& Explorer [colorswitch] [_|O0]
B[n]e] (8]]
g Repositary
@ = Roct of Diwnzipped Build1 23_EntryDevelopment
& | colorspdtek
& | examp Explore fram Here
© __Itutorial pefresh Foider
E readm
Compile
Compile: Al
Buiiled
Builed A1l
Cut
Copry
Delete
Renarme
Mesy Package
Mesw From Template k| | saTForms b
Tools] __| Beanzs]
Properties __| Claszes [
__| Dialogs]
| Cther]
__| SwingForms ¥| 5| Japplet
=] Joislog
@ JFrame | |
—Lg Repository Lﬁ:_j Jawadoc LE Runtitne L@' Project Settings I\f = Jll‘lterna|Fran% I
Il IBana L

2 In the dialogue that appears, type Col or Swi t ch for the class name and click OK.

The following three windows will then open:

¢ The Form Editor window, which is a visual editor for designing classes.

¢ The Component Inspector, which shows the components of your class in its top pane. In the
bottom pane, properties of the component selected in the top pane are displayed.

. The Editor window shows the Java source code for the class.

Setting a layout manager

All containers have a layout manager which controls the appearance and placement of components in
the container. The default layout manager is Border layout, which divides the container into five
sections (one large center section and a smaller section on each of the four sides). We’ll switch the

layout manager to Grid layout, in which the container is divided into a simple grid.

29

Chapter 3: Quick Tour and Tutorial

To switch the layout manager to Grid layout:
1 Right-click on Bor der Layout in the Component Inspector.

2 Select Set Layout | DesignGridLayout from the context menu.

The Form Editor window should now display a two-row, three-column grid.

&

If you click on the Gri dLayout node in the Component Inspector, you will see that the properties
listed in the lower panel of the Component Inspector (the Property Sheet pane) have changed to
reflect the properties of the new layout manager. We’ll now modify these properties to make the grid
two rows by one column.

To change the grid:

30

Chapter 3: Quick Tour and Tutorial

1 Make sure the Gri dLayout node in the Component Inspector is selected.

& Component Inspector [M[=] E3

I ColorSwitch [JFrame]

@ 1 Mon-visual Components
B GridLayout

28 %) = | &

Caolumns

&7

Horizontal Gap

Rioms

= T =T

Yertical Gap

Properties

2 Click on the value in the Col umms property (3), enter 1 in its place, and press ENTER
(RETURN).

y Important: When #ping new values in a property sheet, you must always press ENTER
~ to confirm the entry. Otherwise, the property will revert to its previous value.

Adding components and setting their properties

Next we’ll add the visual components — a label and button in this case — to the application by using
the Component Palette, the toolbar in the upper right corner of the Main Window.

To add the label:
1 Click on the Swing tab (to display JFC icons).

2 Click on the JLabel icon.

fm-'urr rSWing rSWingz rEleans |/Lay|:|uts rEIDrders |

= =T\ B E R ET = =) R E I EE)

3 Click anywhere on the Form window.

31

Chapter 3: Quick Tour and Tutorial
Tip:To identify a toolbar icon, hold your mouse cursor over it, and a tool tip label will
appear with its name.

After adding the label to the Form Editor, you'll see a lot of changes:

e In the Form Editor window, the label is displayed with the default text j Label 1 and blue
squares in its corners (indicating it is the current selected object).

© Form [ColorSwitch] E=]
L}

iLatel [%

. A new node called j Label 1 [JLabel] appears in the Component Inspector.

e The Property Sheet pane displays the label’s properties.

& Component Inspector [... =] E3
I ColorSwitch [JFrame]

@ 1 Mon-visual Components
B2 GridLayout
kil jLabel [JLakel]

28] i) K] | &

alignment 0.0 :
alignment'y s =
background [[204 204 204]
harder [iarvax swing border

debugGraphicsOption| MOME_QPTION

disabledlcon riudll

doubleButferad Falze

fiorit Dislog 11 Plain =
synthetic L Properties

Expert LLaynut LEvents |

. New soutce code is added to the file in the Editor window.

32

Chapter 3: Quick Tour and Tutorial

To add the button:
1 Click on the JButton icon.

2 Click anywhere on the Form window.
You’'ll see more changes in the Form Editor window, Component Inspector, and Editor window.

Now we’ll use the Property Sheet pane in the Component Inspector to remove the default text

(j But t onl) from the label and change the label text on the button.

To make these property changes:

1 Seclect the | abel 1[Label] node in the Component Inspector (if it isn’t already highlighted).

2 Sclect the opaque property and then use the drop-down list to change its value to Tr ue.
Note:In v. 1.3 of the]ava@ 2 SDK, opaque is an expert property. So if you are using version

1.3 or higher of the JavaO 2 SDK, you must click the Expert tab at the bottom of the
Component Inspector to find the opaque property.

& Component Inspector [... =] E3
I Colarsswitch [JFrame]

@ 9 Mon-visual Components
B2 GridLayout
sie jLabell [JLakbel]
[=] Buttond [JButton]

28] i) K] | &

sy ot =Mt Set= - |
mmargin [2,14,2,14]
maximumsize [¥3, 27]

MiniMmUmSize [¥3, 27]

madel =Mat Set= B
NSme riil =
opaUe Falze w | .

preferredsize

True L\}

synthetic

Falze

1]

T T

Expert LLaynut LEvents |

3 Switch back to the Properties tab and scroll down to the t ext property, delete j Label 1, and
press ENTER.

4 Now select the j But t on1[But t on] node.

5 For the t ext property, type SWi t ch the Col or! and press ENTER.

6 Sclect the f ont property, and then press the ... button that comes up to invoke the custom

33

Chapter 3: Quick Tour and Tutorial

Property Editor dialog,

7 In the dialog, select the Serif font, Bold font style, and 24 for font size, and click OK.

Your form should now look like this:

© Form [ColorSwitch] =]
| L)
m [|

Switch the Color! %

Automatically generating event code

Now that we’ve created some visual objects, it’s time to do something with them. So we’ll add an
event to the program to give functionality to the button.

To add the event to the button:

1 Select the j But t onl node in the Component Inspector (if it isn’t selected already).

2 Click the Events tab in the Property Sheet pane.

34

Chapter 3: Quick Tour and Tutorial

3 Select the mouseCl i cked property and press ENTER.

& Component Inspector [... =] E3
I ColorSwitch [JFrame]

@ 1 Mon-visual Components
B2 GridLayout
sie jLabell [JLakbel]
[=] Buttond [JButton]

2 0% % =] A

keyReleased =Manes= "™

keyTyped =Manes=

mouseClicked Jutton? MoyzeClicked

mousebragged =Mone:s g

mouzeEntered =nanes=

maouseExited =nane=

maousehioyedd =Mane= —

mousePrezsed =Mone:s =
Synthetic L Propetties

Expert LLaynut LEvents |

If you look at the Editor window, you will see that new code has been automatically generated —
namely the listener code (j But t onl. addMouselLi st ener) and event method

35

Chapter 3: Quick Tour and Tutorial

(j But t onlMoused i cked)).

Fi ColorSwitch * O] =]
25 # glways regenerated by the FormEditor. :I
26 5
27 private wvoid initComponents () |
28 getContentPane |).setLayout (new java.awt.GridLayout (Z, 1));

29 addfindosdistener (new java.awt.event.Windowhdapter () {

30 public void windowClosing (Jjava.awt.event.WindowEvent evt) {

31 exitForm (evt);

32 +

33 3

34 08 |
35

36 jlLabell = mew javax.swing.dLabel ():

37 jLabell.setDpagque (true);

38 I

39

40 getContentPane ().add (jLabell):

41

42 jEuttonl = new javax.swing.JButton ():

43 jButtonl.=setFont (mew java.awvt.Font ("Serif™, 1, 24)):

44 jEuttonl.setText [("Switch the Color!™):

45 jEuttonl. addMouselistener (new java.awt.event.Mousebdapter () {
45 public void mouseClicked (Jjava.awt.event.MouseEvent evt) |

47 JjButtoniMouseClicked (evt);

45 + 7

4 »

65138 INS

Adding event handler code

Now that we have created event code (for when the mouse is clicked on the button), we need to add
the event handler code telling the program whar to do when the mouse is clicked. When the IDE
generates the event code, the Editor window scrolls to the point where you should add the handler
code (it’s labeled / / Add your handling code here:).

Before we enter the event handler code, we need to declare a variable. In the bottom of the soutce
code, just after the comment, / / End of vari abl es decl arati on, add your own:

private java.aw . Col or currentCol or = java.aw. Col or. | i ght Gray;
Note: You can only type in white areas. The shaded text is uneditable.

At the point in the Editor window where the IDE tells us to add handling code, we will type the
following:

if (currentColor == java.aw . Col or. | i ght Gray)
current Col or = java.awt. Col or. gray;

else if (currentColor == java.awt. Col or. gray)
current Col or = java. awt. Col or. bl ack;

el se

36

Chapter 3: Quick Tour and Tutorial

current Color = java.awt. Col or. | i ght G ay;
j Label 1. set Background (current Col or);

Compiling and running your program

Your program should be ready to compile and run.

To compile ColorSwitch:

1 Make sure that it is active in the Form Editor window or Editor.

2 Select Compile from the Build menu or press F9.

If compilation is not successful, any errors will be noted in the Output Window. Press ENTER or
double-click on the error line in the output to jump to the error in the Editor. Once you have
corrected any errors and successfully compiled, the Status Bar in the Main Window will read
Successful ly conpiled Col or Swi t ch. Now you can run the application.

To run ColorSwitch:

1 Make sure that it is active in the Form Editor window or Component Inspector.

2 Select Execute from the Build menu or press CTRL+F9.

Assuming there are no execution errors, the IDE will switch to the Running Workspace, which means

that the Execution View and Output Window will open along with our application. Each time you
click the button, the color of the label should switch, cycling through light gray, gray, and black.

] M= B

Switch the Color! \

Congratulations! You have just written and run your first program in Forte for Java Community
Edition 1.0. Now you can move on to the next three chapters for more information.

e Chapter 4, Developing Java Applications, takes you through the development process in greater
detail, showing you how to create, run, and debug classes.

. Chapter 5, Developing Visual Classes tells you everything you need to know about creating
visual forms and creating JavaBeansO Components.

. Chapter 6, Using the IDE, is a guide to all of the aspects of the programming environment,

including the Editor and other windows, workspaces, templates and the many customization
options.

37

Chapter 4

Developing Java
Applications

This chapter explains how to use the Forte for Java Community Edition 1.0 IDE to create and run
applications. Specifically, we'll show you how to generate and edit Java objects and code using the
Editor, Object Browser, Explorer, and templates. Finally, we'll explain how to debug, compile and
execute objects with the IDE.

The Explorer and its Property Sheet pane

Most development tasks can be managed in the IDE’s Explorer window, which appears below the
Main Window when you first launch the IDE. The Explorer provides easy access to files, IDE
settings, and various services and extensions. It consists of a pane which provides a tree view of files
and a pane which displays the property sheet of the node selected in the tree. For more information
on the Explorer, see ““The Explorer” on page 118.

The Property Sheet pane can be displayed or hidden by pressing the g button in the Explorer’s
toolbar. Depending on the type of node selected, the property sheet displays available Java properties

Chapter 4: Developing Java Applications

(both writable and read-only) and other configuration options. For more information on working
with property sheets, see “Property sheet” on page 119.

Creating new classes

In Forte for Java Community Edition 1.0, you create new classes with templates. The template serves
as a skeleton for the class and includes basic source code for that class. If you prefer to write all of the
code yourself, you can choose the Enpt y template, and a file will be generated with the only code
being the name of the package where you have created the template. A wide range of templates come
with the IDE, and you can also create your own. For more on templates see “Using templates” on
page 148.

There are several ways to create a new class.

To create a class from the Main Window:

1 Select New From Template in one of the following ways:

. from the File menu
. from its toolbar icon
e using the CTRL+n keyboard shortcut

2 Sclect the type of template (e.g. Classes) by clicking on one of the tabs in the Templates dialog.

3 Click on the icon of the template you want and select OK or just double-click on the template
icon. (Type just the base name without . j ava or any other extension).

4 The Instantiate Template dialog will appear. Select a location in the tree (package) where you want
to place the class, type a name for it in the Object Name field, and click OK.

To create a class from the Explorer

1 If the Explorer isn’t open, select Open Explorer from the File menu or toolbar or press CTRL+O.

2 TFind the package (marked with a folder icon) under the Reposi t ory tab in the Explorer where
you want to place the class and right-click on it to bring up its context menu.

3 Select New From Template, the template type from the first submenu, and then the template itself
from the second submenu.

39

Chapter 4: Developing Java Applications

& Explorer [newprogram] (O]

B/n]e)] s

g Repositary
@ = Roct of DiwnzippedBuild1 23_EntryDevelopment
@ | colorswitch
@ | examples
4 newy
@ | tutor
E readi Refresh Folder

Explore from Here

Compgile

Compile Al

Builed
Build &l

Cut
Copy

Delete

Rename

Mew Package

Mew Fram Templste k _ | &AWTForms »

Tools ¥ |Beans ;

Propeties _ | Clazzes » Applet
__| Dialogs » Clas
_ | Cther » EmptTy%
_ | EwingFarms k

Exception
Irterface —_—
—Lg Repositary Lﬁ:_j Javadoc LE Runtime L@' Project Settings Japplet

— —

4 In the New dialog that appears, type the name of your new object and click OK.

Once you have created the class, the Editor window (or a tab in the Editor window if the Editor is
already open) will open up and display the skeleton code for that class already generated. The new
class will also be automatically added to the Explorer’s tree and the Object Browser (see “Object
Browser” on page 57).

Adding a file to the IDE

The Forte for Java Open File feature provides the ability to open existing (i.e. not created in the IDE)
source files in the IDE straight from a file chooser without the need to first mount directories in the
Repository or navigate to them in the Explorer.

To open a file in the IDE:

1 Select Open File from the first toolbar ot the File menu in the Main Window. A file chooser will

40

Chapter 4: Developing Java Applications

appear asking you which file you wish to open.

2 Browse to the directory on disk where your file is (for example, MyFi r st Cl ass. j ava), select
it, and press Open.

If the file is already accessible in the Repository, then the file will open (usually in the Editor
window) immediately. If not, you must:

3 Decide which directory to “mount” — that is, which directory containing the source file should
correspond to the default package in Java. A dialog will appear with a list of possible choices for
the containing directory; you must select one and press Mount.

If you are opening a Java source file, the IDE tries to determine the correct directory to mount by
looking through the source file and trying to find a package declaration. For example, if you are
opening C: \ nysour ces\ com nycom Foo. j ava, and this file begins with the declaration
package com nmycom , then C:\ nysour ces will be selected as the default. If there is no package
declaration, the directory directly containing the source file will be the default to mount.

You can override the default, but be sure that you choose the right mount point. If you do not choose
the correct mount point, you will not be able to work with the file (your package declaration will be
invalid, you won’t be able to compile or execute the source, debugging won’t work, etc.). When
opening other types of files (such as GIF images, HTML, or resource property files) that do not have
package declarations, you must be sure to mount the correct directory — look at the bottom of the
dialog to see what “package” will be used for the file. The choice will affect any Java sources that are
in the same mounted directory. If you are using classloader-based resource loading (i.e. based on an
abstract resource name such as/ coml mycom nyl mage. gi f), such as when creating a JAR file for
distribution, then the resource names and JAR manifest entry names will be relative to the mounted
directory as well.

Files which cannot be opened for editing will typically just be displayed in their own Explorer
window. You may also select ZIP or JAR archives with Open File. When you do, they are immediately
mounted in the Repository and an Explorer window is opened on their contents to make it easy to
browse archives.

Note: Mounted JAR archives are read-only.

Editing Java sources

Forte for Java’s Editor displays code generated by other parts of the IDE and provides versatile
features to simplify and accelerate manual coding.

41

Chapter 4: Developing Java Applications

The Editor and its layout

The Editor contains source code that is syntactically colored. Different colors signify different text
properties. For example, by default all keywords are shown in blue and all comments in light gray.
Guarded text generated by the Form Editor has a blue background by default and cannot be edited.

The bottom of the Editor window has one or more tabs used to view different documents. From
each of these tabs, the document can be saved, closed, docked or undocked, and cloned. For more
details on managing windows, see “Window management” on page 130.

There are many built-in keyboard shortcuts for navigation and editing, as well as abbreviations for
commonly used keywords. See below for more information.

Integration with other components

The Editor is integrated with the following parts of the IDE:

e Form Editor — All changes made in the Form Editor window are reflected in the source code in
the Editor window.

. Explorer — Changes in properties and creation of new classes, methods, and variables, etc. are
reflected in the Editor window. There are several ways to open a file in the Editor, including
pressing ENTER, selecting Open from the right-click popup menu, and double-clicking on an
icon representing a class, method, variable, etc.

* Debugger — When a program stops during execution, the Editor automatically jumps to the
breakpoint where the code was interrupted. You can toggle breakpoints with CTRL+FS8.

e Compiler — If there is a compilation error, the cause of the error will be highlighted in red in the
Output Window; press ENTER or double-click on that line to jump to the buggy code in the
Editor.

For more detail on how Editor features, see “Editor” on page 122.

Editor Settings

The Editor has default font size, style, and color settings. You may customize these settings separately
for Java, HTML, and plain text under their respective subnodes under Pr oj ect Setti ngs /
Edi tor Settings in the Explorer. “Editor Settings reference” on page 182 lists these properties.

42

Chapter 4: Developing Java Applications

Compiling Java sources

Forte For Java Community Edition 1.0 offers a wide array of compilation options, from different

ways to invoke the Compile command to the ability to use different compilers and set a specific

compiler for each class.

Note: When you choose the Compile (or Compile All, Compile Project, Build, Build All, or Build

Project) command for an object, the IDE (consistent with Java conventions) automatically
compiles the first file it finds with the same name and package. Therefore, if you have two
files with the same file name and package hierarchy mounted in the Repository, the file in the
first package listed will be compiled automatically, even if you choose the Compile command
with the second package selected

Compiling single classes

You can compile an object in the active Editor window tab or if selected in the Explorer by:

selecting Build | Compile from the main menu; or
clicking on the Compile icon on the main toolbar; or
pressing F9; or

right-clicking on the object in the Explorer and selecting Compile from the popup menu.

Compiling packages

There are several options for compiling packages, all available from the Build menu and toolbar on the
Main Window and the popup menu for packages in the Explorer:

Selecting Compile when a folder is selected compiles all sources in that folder which have been
modified since they were last compiled or that have not been previously compiled.

Selecting Compile All does this recursively on a folder and all its sub-folders.

Selecting the Build command (also available with keyboard shortcut ALT+F9) is slightly
different from compiling in that it forces re-compilation of a// sources in a folder, whether they are
current or not. Use this option when you wish to be sure that all of your code can compile
together.

Selecting Build All recursively builds a folder and all sub-folders.

43

Chapter 4: Developing Java Applications

Deleting .class files

The Build menu also has the commands Clean and Clean All which delete compiled classes. Clean
deletes all . cl ass files in the selected package and Clean All recursively deletes all . ¢l ass files in
the selected package and its sub-packages.

Switching compilers

A default compiler is set for each class. If you would like to use a different compiler (or a different
configuration of a compiler) for that class, you can specify one on the class’s property sheet.

To switch compilers for a class:

1 Select the object under the Repository tab in the Explorer.

2 Go to the object’s property sheet (by right-clicking on the node and selecting Properties, clicking
the Toggle Property Sheet icon, or pressing ALT+1).

3 Click on the Execution tab in the Property Sheet window (or pane).
4 Rotate through the compiler types by double-clicking on Conpi | er, or click on the Conpi | er

property’s value and choose from the pull-down menu.

By default, there are two choices for Java sources: using Javac internally (in the same VM as the
IDE), and running Javac externally. Other types of files have different choices.

Disabling compilation for a class

If you have a source in the Repository which you specifically do not want to be subject to
compilation, you can disable compilation for that class.

To disable compilation for a class:

1 Select the object under the Repository tab in the Explorer.

2 Go to the object’s property sheet (by right-clicking on the node and selecting Properties, clicking
the Toggle Property Sheet icon, or pressing ALT+1).

3 Click on the Execution tab in the Property Sheet window (or pane).

4 Click on the Conpi | er property’s value and choose (do not conpi | e) from the pull-down
menu.

Configuring compilers

It is also possible to customize the command-line template for the executable compiler, thus affecting

Chapter 4: Developing Java Applications

the way the compiler is invoked. For more information, see “Adding and modifying service types” on
page 72.

Running Java classes

Java applications may be executed in several ways.

To execute a Java application:

1 Make sure that the Java object is executable (i.e. that it either has a mai n() method orisa
subclass of Appl et or JAppl et).

2 Right-click on it in the Explorer and select Execute from the popup menu.

Alternately, you can select the Java object in the Editor window and then run it one of the following
ways:

. Select the Execute icon on the Main Window.
. Select Build | Execute from the Main Window.

* Use the keyboard shortcut CTRL+F9.

When executing, the Java class is (by default) first compiled. Assuming compilation completes
successfully, the IDE then switches to the Running Workspace (though you may configure it to do
otherwise by going to Pr oj ect Settings / Execution in the Explorer and changing the
Wor kspace property). See “Workspaces” on page 130 and “Customizing workspaces” on page 156
for more information.

Execution categories and executors

You can run typical Java applications using either internal or external execution, each of which have
their advantages and disadvantages. Applets can be run using Applet Execution — see “Applet viewer
settings” on page 48 for more information. Other execution categories can be installed by extension
modules.

External Execution

Most applications use external execution, and it is set in most of the templates that come with the
IDE.

A new virtual machine (VM) is invoked for executing the application. This enables you to run
applications which require a special VM or need to do operations that aren't possible with internal

45

Chapter 4: Developing Java Applications

execution (see below). You can specify the VM executable (such as j ava. exe) and complete
command line parameters together with class path settings for the application. External execution
also protects the IDE from application crashes and delays.

Internal (Thread) Execution

An application run using internal execution runs inside the Forte for Java IDE. This brings the
advantages that the application can modify the IDE itself and be loaded faster. But it imposes at least
two restrictions on the executed application. The application cannot install its own

URLSt r earHandl er Fact ory or Securi t yManager (so you cannot run RMI applications, for
example). In addition, if the executed application crashes, the IDE crashes with it. Go to the
Exanpl es directory in the Repository to look at some samples of internal execution applications.

Note: Some applications, such as startup routines (in the G obal Settings / Startup folder
of the Explorer) reguire the use of internal execution because they're intended to modify the

IDE itself.

Other execution categories

Other execution categories tailored for specific types of applications are installed by various modules,
such as RMI and JSP.

Setting execution

The execution category (e.g. external, internal, or applet) is set for each separate object. When you set
execution, you choose from a list of “executors”, each of which represents a specific configuration
(with parameters such as the path to Java, the working directory, and other arguments) of an
execution category. There can be multiple executors for a given execution category, though the IDE
comes with only one for most categories. See “Adding and modifying service types” on page 72 for
more information.

To switch an object’s executor:

1 Select the object under the Reposi t ory tab in the Explorer.

2 Go to the object’s property sheet (by right-clicking on the node and selecting Properties, clicking
the Toggle Property Sheet icon, or pressing ALT+1).

3 Click on the Execution tab in the Property Sheet window (or pane).

4 Rotate through the executors by double-clicking on Execut or, or click on the Execut or
property’s value and choose from the pull-down menu.

46

Chapter 4: Developing Java Applications

& Explorer [MemoryView] =] B3

5/E]s] [

g Fepositary rs i? i“an iﬁ‘ﬁ - 3
@ (= Root of Ixwnzipped Build1 23 _Entry &
&= || colorswitch I
@ 4 examples
@ 4 advanced
&= [H| Memoryview

Arguments

Cormpiler Fastlavac Compilation

Debugger Standard Debugding

© |w] MemoryWiewlocale £ ||| Executar Internal Exec... | ...
@ || texteditor = External Iiﬁcutinn
A nevwprogram = Irternal Exdution
E= I hiterial il .
F |5; ;5;5;5| | ;| Lpplet Execution
o niot Lit
—‘ g Repositary Lﬁ% Javadoc LE Runtime | (o naot execute)
@' Project Setting= Lﬂ Global Setting= | |\F‘r-:uperties LExeu:utiu:un|

Disabling execution for a class

If you have a source in the Repository which you specifically do not want to be subject to execution,
you can disable execution for that class.

To disable execution for a class:

1 Select the object under the Repository tab in the Explorer.

2 Go to the object’s property sheet (by right-clicking on the node and selecting Properties, clicking
the Toggle Property Sheet icon, or pressing ALT+1).

3 Click on the Execution tab in the Property Sheet window (or pane).

4 Click on the Execut or property’s value and choose (do not conpi | e) from the pull-down
menu.

Configuring external executors

It is also possible to customize the command-line template for the executor, thus affecting the way
the executor is invoked. For more information, see “Adding and modifying service types” on page 72.

Passing command-line arguments to executed applications

To pass command-line arguments to executed Java applications:
1 Select the object in the Explorer.

2 Choose Build | Set Arguments from the main menu.

47

Chapter 4: Developing Java Applications

3 Enter the arguments in the dialog, separated by spaces.

or

1 Select the object and open its property sheet (by right-clicking on the node and selecting
Properties or clicking the Toggle Property Sheet icon).

2 Click the Execution tab, type the argument in the Ar gunent s property, and press ENTER (if you
don’t press ENTER, the changes won’t be kept).

Note: This applies only to application arguments, not to Java virtual machine arguments (which
must be configured on the object’s executor — see “Adding and modifying service types” on

page 72).

Execution Settings node

Under the Project Settings tab in the Explorer is the Execut i on Setti ngs node, where you can
configure the IDE’s behavior when running applications. The options include whether to
automatically compile applications before execution, whether to create a new output tab for each
executed. See “Execution Settings reference” on page 185 for more information.

Applet viewer settings

The IDE allows you to choose which viewer to use when running applets. You can use either:
* Sun's JDK utility AppletViewer, which is set by default; or

e an external viewer such as Netscape Navigator or Microsoft Internet Explorer.

For security reasons, internal execution is not allowed for applets.

To change the default viewer:

1 GotoProject Settings / Executor Types / Applet Execution / Default in
the Explorer.

2 Go to the object’s property sheet (by right-clicking on the node and selecting Properties or
clicking the Toggle Property Sheet icon).

3 Click on the Ext er nal Vi ewer property and type in the path and name of the browser or
applet viewer (and press ENTER)

4 In the same custom property editor, add any startup arguments that you require for the applet
viewer.
To set up a viewer other than AppletViewer:

1 Right-click on Appl et Executi onunderProj ect Settings / Executors / Appl et
Executi on in the Explorer.

48

Chapter 4: Developing Java Applications

2 Select New | Applet Execution Service (by prototype) or New | Applet Execution Service (fresh) from
the context menu. (The first option gives you a replica of the current default applet executor type
and the second gives you a generically configured type).

3 A new node labelled Appl et Execut i on (with a number in parentheses to give it a unique
name) will appear. Select it and, if you wish, modify its name property.

4 Tollow steps 2 through 4 from the procedure for changing the default applet viewer.

You can now use this new executor for particular objects.

Debugging Java classes

The Debugger can be used to present “snapshots” of the system state during execution. By placing
breakpoints at key positions throughout your source code, the Debugger can halt at these points and
display details of the current environment at that point in the source. You can effectively step through
your code, monitoring execution as it occurs. You can also connect the debugger to an already
running process.

Forte For Java Community Edition 1.0 provides support for two debuggers — the standard “Tools”
Debugger and the new JPDA Debugger. The two debuggers work in the same way except that the
JPDA Debugger provides a few extra features. If you are using a version earlier than 1.3 of the JavaO
2 SDK, you may need to install Sun’s support. See “JPDA Debugger” on page 55 for more
information.

Debugger Window

The Debugger Window is a three-tabbed display with tabs for Breakpoints, Threads, and Watches. In
the right half of the window is the property sheet pane which displays the properties and their current
values for the selected node in the left pane.

49

Chapter 4: Developing Java Applications

Debugger Window with the Thread Group tab selected

™ Debugger Window [Threads] =] E3
® Epnan 2lm]ie] [4
Q@ & Thread-0 (suspended)
% CallStack
E‘_ Localz
0 E}, examples advanced Memoryiesw main
Q@ & AWT-Event@ueus-0 (cond. waiting)
% CallStack
& [Locals
= & SunToolkit PostEvertQueus-0 (oond. wai
= E AWTAMIncdovys (running)
= & TimerQueus (cond. waiting) |

{5 Breskpaints | S5 Threads LE‘_ Wigtches |

[b

Breakpoints

The Breakpoints tab simply lists the currently set breakpoints, showing the class name, and the line

number or method on which the breakpoint has been set.

To add a new breakpoint to your code:

1 Position the cursor at the desired line in the Editor window.

2 Select the Debug | Toggle Breakpoint menu or toolbar item from the Main Window or use the
keyboard shortcut CTRLA+FS.

The current line will be highlighted blue to indicate that the breakpoint has been set.

or
1 Select Add Breakpoint from the Debug menu or toolbar to invoke the Add Breakpoint dialog.
2 Choose the type of breakpoint (either “line” or “method”) from the drop-down list.

3 Enter the settings (class name and line number or method name).

Optional breakpoint settings

If you set the breakpoint using the Add Breakpoint command, you have further options:

e If you want to be notified in the Output Window when the breakpoint is reached, check Print
text in the Add Breakpoint dialog. You can also set the text to be printed using a combination of
plain text and these self-explanatory substitution codes: { | i neNunber }, { cl assNane}, and
{ t hr eadNan®e} . In addition, you can use curly braces and a dollar sign to create a substitution

50

Chapter 4: Developing Java Applications

code for a watch (e.g. { $nywat ch}).

. Checking Stop Debugging suspends the debugging session (all threads) when the breakpoint is
reached.

You can also set these options (and later change them, if you wish) in the property sheet for the
breakpoint in the Debugger Window.

To remove a breakpoint:

1 Position the cursor on the line in the Editor window where the breakpoint has been set.

2 Select Debug | Toggle Breakpoint from the Main Window or use the keyboard shortcut CTRL+F8.

Breakpoints can also be removed directly from the Debugger window by right-clicking on a listed

breakpoint and selecting Delete from the popup menu or by selecting the breakpoint and pressing
DELETE on the keyboard.

Threads

The Threads tab displays all thread groups in the current debugging process. These thread groups are
expandable hierarchies; each group containing other thread groups or single threads, which in turn
contain Cal | St ack and Local s nodes.

When a thread is suspended:

e The Cal | St ack node can be expanded to show the current hierarchy of method calls made
during execution.

e The Local s node displays local variables and their current values in the context of the current
thread. You can expand these nodes to see the object sub-structure.

If the process you are debugging has more than one thread, all threads and thread groups appear in
the Threads tab showing a thread name and current status (such as “running”, “at breakpoint”, “cond.
waiting”’and “suspended”). Suspended threads and threads at breakpoint display all “current” system
information.

2> <«
b

The Debugger Window displays the following properties for each running thread:
e Nane — thread name (according to the thread class)

. St at e — status of the thread, such as Runni ng, Cond. wai ti ng, etc.

e C ass — name of the class in which the thread is suspended

e Met hod — name of the method in which the thread is suspended

. Suspended — If Tr ue, the thread is suspended

51

Chapter 4: Developing Java Applications

Watches

The Watches tab lists all currently set watches or values of local variables. By watching a variable, you
can monitor its value at various stages of execution.

To watch a variable:

1

Tip:

Select Add Watch from either

. the Debug menu on the Main Window; or
. the popup menu of the root Wat ches item on the Watches tab of the Debugger Window; or

e of from the popup menu of a variable you have selected in the Editor.

™ Debugger Window [Watches] =] B3

¥§ W,? 1 H H H

= Acd Watch... 278 [3
Deligte All
Propetties

I\E’J, Breskpoints LEB Threads Ll__|+ Watches |

A dialog box requesting the name of the variable to watch will open. Once you have entered the
name of a variable in your source and clicked OK, it will be listed in the Wat ches tree.

Click on this item in the WAt ches tree to select it and display its property sheet.
Continue running the application and watch the variable change.

You can also set a watch by double-clicking the variable in the Editor window, right-clicking,
and then selecting Add Watch from the context menu.

Fixed watches

You can also take “snapshots” of the watch in various contexts in the debugged code by adding fixed
watches.

To add a fixed watch:

a Right-click on the watch and select Create Fixed Watch from the context menu.

A new node will appear in the Watches tree showing the current value of the watched variable.
This value will be frozen, even as the watched variable changes. You can add multiple fixed
watches for the same variable in different contexts.

52

Chapter 4: Developing Java Applications

The debugging session

To initiate a debugging session:

1

Set a breakpoint and then select Debug | Go from the Main Window (or press F5). (If you are
debugging a GUI application or another looped application, it is not necessary to set a
breakpoint.)

By default, the IDE switches to the Debugging Workspace (to configure it to do otherwise, see
“Customizing workspaces” on page 156), where the Debugger Window, the Editor with the
source being debugged, and the Output Window all open up. The Output Window is split
vertically, with Debugger output on the right and any output from the application being
debugged on the left. When the Debugger reaches a breakpoint in your source, that breakpoint is
highlighted pink. The pink line will move through your source as you code as you step through its
execution.

Debugging can also be initiated by selecting the Trace Into command, which causes the Debugger
to stop on the first line after the main method.

Once execution has halted (whether on a breakpoint or just after the main method), use the Trace
Into, Trace Over and/or Go menu or toolbar items under the Main Window Debug menu (or the
keyboard shortcuts F7, F8, and 5, respectively) to proceed.

Trace Into steps into the method at which the Debugger is currently stopped if there is a method
call on that line and breaks at the start of the called method, allowing you to observe execution
incrementally. If there is no method call on the current line, then it behaves like Trace Over.

Trace Over executes the current statement without breaking and stops at the next statement.

Step Out (which you can select from the Main Window) halts execution after the current method
finishes and control passes to the caller.

Go resumes execution, which continues until it reaches the next breakpoint or the end of the
application.

Finish Debugger ends the current debugging session.

By stepping through your code like this, you can monitor whatever parts of the system you choose
during execution of the code.

Suspending and resuming debugging

The Debug menu and toolbar also have Suspend All and Resume All options, which allow you to
P > y
“pause” execution at any time and then continue from the point execution was suspended.

To suspend selected threads or thread groups:

1

Under the Thread Group tab in the Debugger Window, select the nodes of those threads or thread

53

Chapter 4: Developing Java Applications

groups (using SHIFT to select multiple consecutive nodes and CTRL to select various
non-consecutive nodes).

2 Right-click on one of the selected nodes and select Suspend from the context menu.

To suspend all threads:

a Select Suspend All from the Debug menu or toolbar; or

a Right-click on the root Thread Group node in the Debugger Window and select Suspend from the
context menu.

When a thread is suspended, the Debugger window displays all current information for the thread.

Likewise, you can resume any or all of the suspended threads. Select Resume All from the Debug menu
to resume execution of all threads. To resume execution for threads individually, right-click on the
thread or thread group and select Resume from the context menu.

Changing the current thread

The current thread is set automatically when a breakpoint is reached. You can also change it manually.

To change the current thread:

a Under the Thread group tab in the Debugger Window, right-click on the node of the thread you
would like to switch to and select Switch to thread from the context menu.

Connecting the Debugger to a running process

To connect the Debugger to an already-running virtual machine:

1 When launching the process, enter - Xdebug in the Java virtual machine’s parameter list (after
- ¢l assi ¢ when running on HotSpot) and note the agent password.

2 Select Connect from the Debug menu or toolbar to invoke the Connect to Running VM dialog.
3 Enter the host name and agent password in the dialog.

After clicking OK, the Debugger will connect to the running VM, and you will be able to see all
threads as if you were debugging locally. If you have source code for the debugged application and

you set a breakpoint in the source code, the Editor will be opened with the breakpoint line
highlighted in the source.

Setting the debugger

The debugging category (e.g. applet, default, or JPDA) is set for each separate object in the IDE.
When you set debugging, you choose from a list of “debugger types”, each of which represents a

54

Chapter 4: Developing Java Applications

specific configuration of a debugger (with parameters such as the path to Java, the working directory,
and other arguments). There can be multiple debugging types for a given debugging category, though
the IDE comes with only one for each category. See “Adding and modifying service types” on

page 72 for more information.

To switch an object’s debugging type:

1 Select the object under the Reposi t ory tab in the Explorer.

2 Go to the object’s property sheet (by right-clicking on the node and selecting Properties, clicking
the Toggle Property Sheet icon, or pressing ALT+1).

3 Click on the Execution tab in the Property Sheet window (or pane).

4 Rotate through the debugging types by double-clicking on Debugger , or click on the Debugger
property’s value and choose from the pull-down menu.

Disabling debugging for a class

If you have a source in the Repository which you specifically do not want to be subject to debugging,
you can disable debugging for that class.

To disable debugging for a class:

1 Select the object under the Repository tab in the Explorer.

2 Go to the object’s property sheet (by right-clicking on the node and selecting Properties, clicking
the Toggle Property Sheet icon, or pressing ALT+1).

3 Click on the Execution tab in the Property Sheet window (or pane).

4 Click on the Debugger property’s value and choose (do not conpi | e) from the pull-down
menu.

Configuring debuggers

It is also possible to customize the command-line template for the debugger, thus affecting the way
the debugger is invoked. For more information, see “Adding and modifying service types” on
page 72.

JPDA Debugger

Forte for Java, Community Edition 3.0 also supports the new Java Platform Debugger Architecture
(JPDA) Debugget. If you are running JavaO 2 SDK v. 1.3 or later for Windows or Solaris, Sun’s
JPDA support is already installed. If you are running an earlier version, you will need to download

55

Chapter 4: Developing Java Applications

and install that support.

Installing JPDA

To install Sun’s JPDA support for Windows:

1 Download the JPDA support files from Sun at http://java.sun.com/products/jpda/.

2 Unzip j pdal_0-w n. zi p to a directory on your hard drive, such as C: \ j pda.

3 Addthe C:\j pda\ bi n (or wherever you put it) folder to the system path in the IDE startup
scriptf ort e4j . bat orfortedj _nt. bat (whichever one you use). The result should be a line
in the script that looks like: set PATH=C: \ j pda\ bi n; “PATH%

4 Copy the file C:\ j pda\ | i b\ j pda.j ar to the YW AVA_HOVE% \ j re\ | i b\ ext folder.
5 Restart the IDE.

To install Sun’s JPDA support for Solaris:

1 Download the JPDA support files from Sun at http://java.sun.com/products/jpda/.

2 Unzip j pdal_0-sol sparc. zi p to a directory on your hard drive, such as /] pda.

3 Addthe/j pda/ bi n folder to the system path in the IDE’s startup script f or t e4j . sh. The
result should be a line that looks like: PATH=/ j pda/ bi n: $PATH

4 Copy the file/j pda/li b/jpda.jar tothe Y AVA_ HOVEY j re/ | i b/ ext folder.
5 Restart the IDE.

Setting the JPDA Debugger

To use JPDA Debugging, you will need to set the debugger for the class you're debugging to JPDA
Debugging.

To set the debugger to JPDA for a class:
1 Select the class to be debugged under the Repository tab in the Explorer.

2 Under the Execution tab in the property sheet, set the Debugger property to JPDA
Debuggi ng.

Tip: If you generally prefer to use JPDA debugging, you can change the debugger in the templates
you use to create new objects. See “Modifying existing templates” on page 151.

Additional JPDA debugging features

The JPDA module adds the following debugging functionality:

56

Chapter 4: Developing Java Applications

¢ Watch Expressions — you can define an expression as a watch, such as (nmyCl ass.y *
nyCl ass. wi dt h) + myCl ass. x and the expression will be evaluated on the fly while
debugging and displayed for you.

* Break on exceptions — when an exception is encountered, a breakpoint is created and
execution stops. You can specify the kind of exceptions that will trigger a break.

* Break on classes — the debugging process stops when a class is reached or left. You can specify
a filter to determine on which classes the break is to occur.

. Break on threads — the debugging process stops on the start or death of a thread.

. Break on variables — the debugging process stops on variable access or modification. You must
specify a class and its variable name.

Object Browser

The Object Browser gives you a Java-oriented perspective on your classes, allowing you to view a
hierarchy of source files filtered in the way that you specify.

To open the Object Browser:

pY

a Click on the Browsing workspace tab; or

a Select Open Browser from the File menu or toolbar.

The Object Browser window is divided into three panes — Packages, Objects, and Members.

Packages pane

The Packages pane lists all of the packages from all of the file systems in the Repository. The first
icon on the top of the pane is the Show as tree icon, which gives you the choice whether to view the
packages as a tree (when selected) or a list (when deselected). The second icon is for expanding the
whole tree. A pull-down menu in the upper left corner allows you to choose different package filters.

Objects pane

The Objects pane displays objects of the package selected in the Package pane. Three types of objects
(classes, interfaces, and files without source) can be filtered. The seven toggle icons in the top of the
pane represent filters for these objects. The first three icons (Class, Interface, and Class without
source) represent general filters, meaning you can choose whether to display any objects of these
types. The second group of icons (Public, Package, Protected, and Private) are filters for the class or
interface according to their access modifiers.

57

Chapter 4: Developing Java Applications

For example, if only the Class, Private, and Package filters are selected, the following will be displayed:
e All classes with private and package-private modifiers

e All other non-class and non-interface objects

No classes with public or protected access and no interfaces at all will be shown.

By default, all seven filters are selected, meaning that all objects are shown, including classes and
interfaces with any access modifier.

Whereas the Explorer uses a tree structure, the Objects pane uses a list structure. Whereas the
Explorer tree would should show class | nner cl ass as a subnode of Qut er cl ass, the Object
Browser would display them in a list as the separate items Qut er cl ass and

Qut ercl ass. | nnercl ass.

Members pane
The Members pane displays members of the object selected in the Object pane.

The first icon in the Members pane is a toggle switch that allows you to view members as bean
properties and events. When this icon is selected, the other filters in the pane are disabled.

The next three icons represent filters for general member types (methods, variables, and
constructors). As with class and interface objects in the Objects pane, you can further filter method,
variable, and constructor members according to their access modifiers using the second group of
icons (identical to the last four icons in the Objects pane).

Clicking on the last icon in this pane allows you to sort the members alphabetically within member
type.

Tip: You can use the tool tip feature to find out the names of the filters and more information
about the items listed in the panes. To get an item’s tool tip, place the mouse cursor over the
item and wait about a second for the tool tip to appear.

Using the Object Browser

Much like with the Explorer, you can use the Object Browser as a base for many tasks in the
development cycle. Context menus are available for every item listed in the Object Browser, allowing
you to do the following:

¢ Open objects or their members in the Editor window (and, if applicable, the Component
Inspector and Form Editor window)

* Open HTML files in the Web Browser

58

Chapter 4: Developing Java Applications

e Cut, copy, and paste objects and their members

* Delete, rename and add packages, objects, and members

. Add new packages, objects, and members

¢ Compile or build an object or package

e Open up a separate Explorer window on a package

You can also double-click an object or member to open it up in the Editing workspace.

When you open a source file from the Object Browser, the Editor window opens up just below the
Object Browser by default allowing you to easily switch between these windows. If multiple source
files are open at the same time, each file has its own tab on the bottom of the Editor window,
allowing you to go back and forth between files.

Note: The Object Browser is not specifically designed for designing visual applications. When
working on visual projects, you may find it easier to work in the Editing workspace with the
Explorer where, for example, you can easily edit properties for visual forms and double-click
on a visual source node to open the Form Editor on that node. See “Developing Visual
Classes” on page 84 for more information.

Creating package filters

If you have a lot of packages in your Repository, you may want to create custom package filters in the
Package pane of the Object Browser to make it easier to view the objects you want.

To create a new package filter:

1 Make sure that the Show as tree icon is #of selected.

2 Click the ... button in the upper right corner of the Packages pane to bring up the Package Filter
dialog.

3 In the Package Filter dialog, click New. A filter called New Fi | t er will be automatically created.

4 Now a Change Filter Name dialog will appear. Enter a name for the new filter and click OK.

Next you will need to enter the specifications for your filter. In the details panel of the Package Filter
dialog is a list of filter expressions. By default, the expression com * is created for all new filters.

There are two ways to create a filter:

e Using the wildcard option, you can enter prefix (e.g. com net beans* suffix (e.g.
*debugger), or infix (e.g. * debugger *) expressions to narrow down the number displayed
packages.

59

Chapter 4: Developing Java Applications

. Using the regular expression option, you can create more complex filters using regular
expressions (in standard POSIX format).

To add an expression to a filter:
1 Select the filter and click Add.
2 Click the radio button for wildcard or regular expression and type the expression in that field.

3 Click Change.

To change an expression in a filter:

1 Select the filter in the list of filters in the Package Filter dialog and select the expression to be
changed in the Details list (e.g. com *).

2 Continue with steps 2 and 3 of the add filter procedure.

Other buttons

. Pressing Remove takes the selected filter expression out of the selected filter.

. Pressing Delete removes the entire filter from the pull-down menu.

Browsing and exploring objects and their
elements

You can view members of classes in both the Object Browser and the Explorer. Source files in a file
system are represented as Java objects. Each object contains at least one class within the source as
well as code representing members such as methods, constructors, and variables. In the Object
Browser, the top-level and inner classes are shown in the Objects pane with all of their members
appearing in the Members pane. In the Explorer, classes, named inner classes, and members are all
represented hierarchically in subtrees of the Java objects.

60

Chapter 4: Developing Java Applications

Table 1: Source and form file icons

Icon

Description

[&!

Java source file (both JavaBeans and non-JavaBeans files)

]

Java file without source code (both JavaBeans and non-JavaBeans files)

ﬂ

Runnable Java object (i.e. JavaBeans file or non-JavaBeans file that has a
mai n method)

ﬂ

Invalid Java source file (cannot be parsed)

(@)

Form object

Runnable form object

Incorrect form object (cannot be parsed)

Invalid package declarations

Source files that have the wrong package named in their code are marked with | nval i d package
decl ar at i on in the tool tip. To rectify this, you can change the package name in the file or mount
a different directory. As a shortcut, you can use the Open File feature to open mount a new directory
and open the file in that directory. See “Adding a file to the IDE” on page 40.

Elements of Java objects

Subtrees of each Java object represent the hierarchy of elements. Each Java object contains at least
one class which in turn contains elements such as constructors, methods, variables and inner classes.
You can set behavior properties for each of these elements.

61

Chapter 4: Developing Java Applications

Table 2: Java Object Elements

Icon Elements Properties
Class, Inner class Name, modifiers, extended class, implemented
& interfaces
Interface, Inner interface Name, modifiers, extended interfaces
!
Constructor Name, modifiers, arguments, exceptions
=
Method (non-static) like constructor, plus return type
&>
Method (static) like constructor, plus return type
i
Variable (non-static) Name, modifiers, type, initial value
-
Variable (static) Name, modifiers, type, initial value
=
Initializer (non-static)
L)
Initializer (static)
(=1

Member accessibility

The elements listed above can have several kinds of accessibility. The icons of the elements consist of
icons in the previous table and their accessibility flag(s).

62

Chapter 4: Developing Java Applications

Table 3: Icons for accessibility

Icon Access

private

(=
package private

=
protected

¥

[no icon] public

To create a new element
1 Select the class (or interface) in which you want to create the element.
2 Seclect New from the popup menu.

3 In the expanded submenu, choose the element you want to create.

Source synchronization

Source synchronization is a feature that helps to keep your Java source files current by:

e automatically generating an interface’s methods for you when you implement that interface in a
source file; and

e automatically updating all source files in the Repository implementing the interface when you
change a method in or add a method to that interface.

Source synchronization works with all interfaces stored in the Repository and all standard interfaces
in the Java 2 SDK. You can choose to synchronize source automatically just after parsing (which, by
default, occurs after a two-second break in typing and caret movement) with or without confirmation,
or explicitly by selecting Synchronize from the context menu of the implementing class in the
Explorer.

All source files have a Synchr oni zat i on Mode property on their property sheet (accessed
right-clicking on the node and selecting Properties or clicking the Toggle Property Sheet icon in the
Explorer when the node is selected). The property can be set to:

* Do not synchronize.

63

Chapter 4: Developing Java Applications

Confirm changes — the default setting. The Confirm Changes dialog appears which allows you
to specify which methods are to be synchronized.

Without confirmation — all interface methods are automatically generated for the
implementing classes without a dialog, prompting you to confirm the changes.

Source Synchronization property sheet

You can adjust general source synchronization settings on the property sheet for the Pr oj ect
Settings / Java Sources / Source Synchroni zati on node in the Explorer. The
properties are:

After Parsing Without Errors — If Tr ue, synchronizes after parsing without errors.
After Save Only — If Tr ue, synchronizes after saving.

Return Generation Mode — Generates either nothing, an exception, or the string “return null”
when creating a new method declared to return a value.

Synchronization Enabled — If Fal se, all synchronization is turned off.

Synchronizing source

To synchronize (with confirmation) when implementing a new interface in a class:

1

In the Editor window, type i npl enment's | nt er f aceNane in the class declaration line of the
source file.

Wait a few seconds for the source to be parsed, or save or compile the file. The Confirm Changes
dialog will then appear listing all of the methods to be added to the class.

a. Select Process All to add all of the interface’s methods to the class; or

b. Select any combination of the methods in the Changes List and select Process to add only
those methods to the class; or

c. Select Close to prevent any of the methods from being added to the class.

The Confirm Changes dialog also lets you change the synchronization mode for the class.

To synchronize (with confirmation) when changing or adding methods to an interface:

1

2

Add the method(s) to the interface code and then wait for parsing to occur and the Confirm
Changes dialog to appear. The dialog will display the updated methods for the first class found
that implements the interface.

Follow step 2 from the previous procedure.

If you have multiple source files in the Repository that implement the changed interface, a Confirm
Changes dialog will appear for each one of them.

64

Chapter 4: Developing Java Applications

If you have automatic synchronization disabled on a specific source file or for all source files, you can
still synchronize a class with its interface’s methods by selecting Synchronize from the class’s context
menu.

Note: The Synchronize command only works when selected on class objects (not interfaces).

Developing JavaBeansO components

Forte for Java Community Edition 1.0 provides tools to make generation and customization of
JavaBeansO Components faster and easier. You can create the standard parts of your bean — such as
properties, listener support, default constructor, and BeanInfo — without having to write any code
manually.

In Forte for Java, creation of JavaBeans components begins with any class that has source code. In
the Explorer, you will find Bean Pat t er ns as a subnode of any such class. All of the operations for
maintenance of property and event sets — thus all of the things that determine the characteristics of
the bean — can be accessed and modified from this subnode.

& Explorer [Bean FPatterns] =] B3

a[ofe) [[

@ 4 colorpicker
9 ColarPicker
@ B class ColorPicker
@ 4 Fields
@ < Constructors
@ 4 Methods
E Bego Dattarn,
& [ColorPrevie| (enerste Beaninfo
@ ColarPrevie

[»
B
'._z
-
‘:é
*
=i

[esny k
&= | ColorPrevie e %
= || imageviewer Properies Imclescedd Propierty
B readme Unicast Evert Source

—‘ @ Repositary L ﬁij Javadoo L :T_p' R hulticast Evert Source

<& Project Seftings Lﬂ 2lohal Settings |

Note: Bean Patt erns also includes non-public property and event mechanisms, which are not
recognized as JavaBeans patterns in introspection. This is because Bean Pat t er ns can be
used to set property and event mechanisms in standard classes which are not true JavaBeans
components.

For a more thorough review of JavaBeans Components and concepts such as introspection, see

65

Chapter 4: Developing Java Applications

http://java.sun.com/beans/.

Creating properties

To create a property in a class source:

1 Find the class in the Explorer, expand its node, and right-click on Bean Patt erns.

2 In the popup menu, select New | Property. The New Property Pattern dialog will appear, which
will allow you to customize the code to be generated for the property.

[New Property Pattern
-Property
Matme: || |
i
Type: |boolean -
Moce: | Read Harite -

[Bound

[] Constrained

- Options
[_] Generate field
Generate return statement

Generate zet statement

Zenerate property change support

Ik

Cancel

3Type in a name for the property. (The name must be a
valid Java identifier.)

4In the Type combo box, select the type of property
from the list, or type in a class identifier.

5In the Mode combo box, choose whether to have the
getter method (READ ONLY), setter method (\RI TE
ONLY), or both methods (READ/ WRI TE) generated.

6Check the Bound (meaning that property change events
must be fired when the property changes) and/or
Constrained (meaning that the property change can be
vetoed) options, if applicable to the property. The
usefulness of checking these options is enhanced if you
also check the Generate Property Change Support option
— see below.)

If you click OK after these steps, the definitions of the
methods will be generated. However, you can also check
all or any combination of the following options:

e If you check the Generate field option, a private field is generated. This field will have the same
name and type as the property.

e If you check the Generate return statement, a statement that returns the field (e.g. return
nmyProperty;) isinserted in the body of the getter method.

e Ifyou check the Generate set statement option, a statement setting the value of the property field
to the value of the setter parameter will be inserted into the body of the setter method.

. If you check Generate property change support, all of the code needed for firing
PropertyChangeEvent s (for bound properties) and Vet oabl eChangeEvent s (for
constrained properties) will be generated in the bodies of the setter methods. In addition, code
to declare and initialize the property change support object is generated.

66

Chapter 4: Developing Java Applications

Creating indexed properties

You can also create indexed properties. Indexed properties are usually implemented as arrays or

vectors and allow you to set and get values using an index. Indexed getter and setter methods have a

parameter which specifies the index of the element to be read and written.

To create an indexed property in a class source:

1
2

(8]

Find the class in the Explorer, expand its node, and right-click on Bean Patt erns.

In the popup menu, select New | Indexed Property. The New Indexed Property Pattern dialog will
appear, which will allow you to customize the code to be generated for the property.

Proceed according to steps 3 through 6 above in the instructions for creating a simple
(non-indexed) property.

Check the items in the Options section appropriate for the property. These four options are
analogous to the options for a simple property.

In addition, the indexed properties may have getter and setter methods which enable reading and
writing all elements (the whole array). The checkboxes in the Non-Index Options panel enable
you to add a getter with or without a r et ur n statement and a setter with or without a set
statement.

Click oK.

Creating event sets

You can also add event sets to your bean.

To add an event set deliverable to only one listener:

1

Right-click on the Bean Patt er ns subnode of your class and select New | Unicast Event Source
from the context menu. The New Unicast Event Set dialog will appear on the screen.

67

Chapter 4: Developing Java Applications

.New Unicast Event Set *

2Use the drop-down list in the Type field to

Event Set specify any listener interface (event class
Type: type) that extends
java et event ActionListener] java.util.EventListener.

jarva st event CortainerListensr 3Click one of the two radio buttons below

the Type field to select how you want the
event set implemented. The choices are:

Oipation

java.awt event FocusListener
® Ge java.awt event temlistener
1 elisve st evert KeyListener

jzvea st event Mouseliztener *Generate empty — generates an empty

java et event MousebationListener implementation
java awt event WindowListener - . .
*Generate implementation — generates a
simple implementation for one listener
Ok C8MC8l | 4Check the Generate event firing methods box

if you want to generate a method
corresponding to every method in the
listener interface to fire the event to all listeners.

To specify how the event will be transferred to this method, check the option Pass event as
parameter. This adds parameters to the firing events. The type of parameter (Event Cbj ect
subclass) will be the same as the type of parameter of the corresponding method in the listener
interface.

If you leave the Pass event as parameter option unchecked, the firing method will have the same
parameters as the constructor of the event object class (subclass of Event Obj ect), and this
constructor will be called in the body of the firing method. If there are multiple constructors for
the event class, the generator behaves as if the Pass event as parameter option is checked.

When you click OK, an addEvent NaneLi st ener method and a
removeEvent NanmelLi st ener method, along with firing methods if you specified them, will be
added to your source.

For multicast event sources you can specify how to implement the adding of listeners and firing of
events.

To add an event set deliverable to more than one listener:

1

Right-click on the Bean Patt er ns subnode of your class and select New | Multicast Event Source
from the context menu. The New Multicast Event Set dialog will appear on the screen.

In the Type field, specify any listener interface (event class type) that extends
java.util.EventListener.

Click one of the three radio buttons below the Type field to select how you want the event set
implemented. The choices are:

* Generating an empty implementation

. Using a simple Ar r ayLi st implementation

68

Chapter 4: Developing Java Applications

e Using the Event Li st ener Li st support class from the j avax. swi ng. event package

4 Follow steps 4 and 5 in the procedure for adding unicast events.

Generating Bean Info

BeanlInfo is a class which contains information about the JavaBean, such as properties, event sets, and
methods. BeanInfo is an optional class, and you can choose what information will be included in it. In
Beanlnfo you can also specify additional properties of the JavaBeans properties and BeanlInfo,
including icons, display names, etc.

By default, all superclass beaninfo, public properties and event sets are included in Beanl nf o
(permitting customization of various attributes), and all public methods are discovered by
introspection.

To generate Beanlinfo for a class:

1 Right-click on the Bean Patt er ns node in the class and select Generate BeanInfo from the
popup menu.

The Generate Bean Info dialog, which looks much like the Explorer with its Property Sheet pane
open, will appear. The left panel shows the three main nodes (Bean | nf o, Properti es, and
Event Sour ces) and the right panel shows the properties of the selected node.

E Generate Bean Info
Bean Info | g || |
28 LA S

& B Properties pel| v ¢ <
@ EY Evert Sources Marme mouzetotionListensar

gi TausiM;tinnLimener — Falze

ocusListener
44 windowListener Hiciden False
Al ¥ kevListener Preferred False
Lizt

G _mDUSE ! ene.r Dizplay Mame il | .

4 inputhethodListener %

[l 4#¢ componertlistener Short Description il

L8 cortainerListener Include in Beanlnfo True

4 propertyChangelistensr

—LPererties Lexpert |

Ok Cancel

2 Make any desired changes to the properties and then click OK.

Note: The JavaBeans Components properties referred to in the Pr oper ti es node should not be
confused with the word “properties” as generically used in Forte for Java to refer to
characteristics and settings (as displayed in each object’s property sheet) of parts of the IDE

Chapter 4: Developing Java Applications

and objects stored in it. Thus, in the Bean Info Generation dialog, we refer to properties of
JavaBeans properties.

Bean Info node

The first four properties (e.g. | con 16x16 Col or) allow you to designate icons for the bean by
entering the relative path to and name of a graphic file.

The next two, Def aul t Property |ndex and Def ault Event | ndex, apply to the whole
Beanlnfo class. In these two properties, you can specify a default property or event that may be
declared in the BeanInfo to be customizable. The values are the indexes of the default property and
default event set in the Pr opert yDescri pt or and Event Set Descr i pt or arrays (respectively)
and are set to -1 if there is no default property.

For more information on these and the other properties, see Beanlnfo in the API documentation that
comes with the JavaO 2 SDK or check Sun’s website,
http://java.sun.com/products/jdk/1.2/docs/api/java/beans/Beanlnfo.html

Properties and Event Sources nodes

These nodes have only one property, Get From | ntrospect i on. By default, this property is set
to Fal se. If you set the value to Tr ue, then (when the bean is used) all information about the
properties (or event sets) will be taken from introspection. Thus the generated Beanl nf o will return
a null value instead of an array of descriptors of properties (or event sets).

This feature is particularly useful if you want to customize either JavaBeans properties or event
sources, but not both. Thus you can customize one (properties or event sources) and have the
information about the other taken from introspection.

If you right-click on either of these nodes, you can choose from the popup menu to either include or
exclude all of the JavaBeans properties or event sets from the Beanl nf o.

Subnodes of the Properties and Event Sources nodes

The subnodes are the JavaBeans properties and event sources themselves. Each of these subnodes
has two groups of properties. The first group, under the Properties tab, are general properties and
apply to both JavaBeans properties and event sets. The Expert tab holds settings specific to properties
ot event sets.

The most important property here is the | ncl ude i n Beanl nf o property, which is set to Tr ue
by default. If you set this property to Fal se, the JavaBeans property or event set will not be shown
in the BeanInfo, either to users or to other classes. You can also change this value by right-clicking on
the property or event source and selecting Toggle Include. When Tr ue, the icon has a green square
with a white check mark; when Fal se, it displays a red square with a white X.

70

Chapter 4: Developing Java Applications

In the Expert tab, you can change the mode of a JavaBeans property to make it more restrictive (i.e.
you can change a READ/ WRI TE to READ ONLY or WRI TE ONLY).

Note: If you have any JavaBeans properties with non-standard names, source for these is not
automatically generated in the Beanl nf 0. You can enter such code manually in the Editor.

In addition, if an indexed JavaBean property has a non-indexed getter and setter, you can specify
whether these methods are specified in the Beanl nf o.

Tip: If you want to set a property sheet property to the same value for multiple JavaBeans
properties or event sets, you can select several nodes at once and set the properties for all of
them.

Editing BeanInfo source

After you have generated Beanl nf o from the Generate Bean Info dialog, you can manually edit the
Beanl nf 0 in the Editor window (except for the blue guarded blocks).

Regenerating Beaninfo

You may regenerate Beanl nf o for classes that already have Beanl nf o. If there is already a
Beanl nf o class for a bean, any changes you make in the Generate Bean Info dialog or in the
Beanl nf o source code will be saved.

Customizing JavaBeans components

When writing in Java, it may be useful for you to take existing beans and alter them to better suit your
purpose. The Customize Bean command allows you to create an instance of a JavaBean, customize its
properties, and save it as a serialized prototype. This may be done on a Java class or on an already
serialized prototype (. ser file). The class must be public and have a public default constructor, and it
must also be serializable to make a serialized prototype from the customized settings.
To customize a JavaBean
1 Right-click on the bean in the Explorer and select Customize Bean from the context menu.
The property sheet for the JavaBean will open up. If the bean is a visual component (meaning
that it extends j ava. awt . Corponent), the component itself will also appear on the screen.
2 Make the desired changes in the property sheet.

3 Click Serialize or Serialize as to create a serialized prototype (. ser file) of the bean with its
customized properties.

71

Chapter 4: Developing Java Applications

Serialize As allows you to select a name and location for the . ser file. Serialize (available for . ser
files only) saves the bean into the same . ser file it originated from, overwriting the previous
content.

If you do not want to keep the customized settings, press the Cancel button to close the
customization window.

Adding and modifying service types

Forte for Java Community Edition 1.0 provides editable service types to give you more control over
how your applications are compiled, executed, and debugged. These service types specify not only
which compiler, executor, or debugger to use but also how the service is to be invoked (what the path
to Java is, what arguments are used, etc.).

The IDE comes with a set of default service types which suit most development tasks. A compiler
type, executor, and debugger type is assigned to each class by default. You can set service types for
each class individually in the Repository.

You can also modify the existing service types and create new ones. For example, the default service
type for external execution of applications may not suit every one of your classes, so you may want to
have multiple execution service types (or “executors”). You can create a new executor type for
external execution, and use this executor for some of your classes while you use the default executor
for other classes.

Service types are represented as subnodes under the various categories of Conpi | er Types,
Debugger Types, and Execut or Types under the Project Settings tab in the Explorer. For all
categories of compilers (e.g. external or internal), executors (external, internal, applet, etc.) and
debuggers in Forte For Java Community Edition 1.0, the IDE comes with one service type.

Adding service types

To add a new service type:

1 Under the Project Settings tab in the Explorer, expand the Conpi | er Types, Execut or

72

Chapter 4: Developing Java Applications

Types, or Debugger Types node, depending on the kind of service type you want to add.

& Explorer [External Execution] =] B3

a[ale] [0 |

%' Project Zettings
&= @ Repository Settings
@= 1 Workspaces
@ il Execution Types
® Tl Extern
A E Favitt]
@ L, Interng Move Down
© &l Applet
® %4 Debugger

A2 %) (™| O

-

@ T Stands Mew
g5t

External Execution Service by prototype)
Extermal Execution Service

=h

o E Applet Properties

I_II

@ Repositary L ﬁ:_f[Javadoc

L S Rurtime

48 Project Seftings Lﬂ Zlokal Settings |

2 Right-click on the node for the category of service type you would like to add and select New |
[service type] Service (by prototype) or New | [service type] Service (fresh) from the context menu.

The first option creates a copy of the default service type (with its current configuration) for that
category. The second option creates a fresh service type with a generic configuration

3 Expand the category’s node. You will see at least two subnodes. The last subnode is the newly

created service type.

& Explorer [External Execution {2]]

B/E]s] [

% Project Settings
Loy @ Repository Settings:
@ 1 Wiorkspaces
@ il Execution Types
® Tl External Execution
Tl External Execution [defaul]
~al External Execution (2
® I, Internal Execution D-S
® & Applet Execution
@ &§ Debugger Types
§ T Standard Debugging
:*‘ Standard Debugging [default]

-

=] E3

295%™ |

g Repositary

L b Javadoc L S Rurtime |

%8 Project Seftings Lﬂ Zlobal Settings |

{iawva hame Hking ey
External Execution (2]

External Process

Idertifying Mame

—LPererties LExpert |

4 Select the newly added node and, on its property sheet, modify the | denti fyi ng Nane
property to give the new service type a distinct name (something that you will recognize when

Chapter 4: Developing Java Applications

using the drop-down list to choose a service type for an individual class). You can type the name
directly into the field and press ENTER, or you can click on the property’s value and then click
on the ... button that appears to use the custom property editor.

Tip: If you want to make a newly added service type the default for its category (meaning that
subsequent new objects, unless configured to do otherwise, will use that service type), you
can right-click on the service type and select Make Default from the context menu.

Configuring service types

After you have added a new service type, you can then configure it. (You can also configure
already-existing service types).

To configure a service type:

1 Select the service type’s node (under the service type category under Conpi | er Types,
Execut or Types, or Debugger Types under the Project Settings tab in the Explorer) and
open its property sheet.

2 Modify any of the editable properties under the standard Properties or the Expert tabs.

Note:Classes have no way have registering the name changes of the service types they are

using. Therefore, if you change the | dent i fyi ng Name property of a service type already
being used by any classes, those classes will then revert to the current default service type for
that category (which is only a problem if you are changing the name of a non-default service

type).

Process Descriptor property editor

Some of the service types have a property (e.g. EXt ernal Execut or for external executors and
Ext ernal Conpi | er for external compiler types) that can be edited with the Process Descriptor
property editor. In this custom property editor, you can set the process and arguments for the service
type. The Arguments Key panel displays the substitution codes (enclosed in cutly braces) which you
can use (and are used by default) in defining the service type.

74

Chapter 4: Developing Java Applications

H Property Editor: externalExecutor (NbProcessDescriptor)

Process: |{ia'-.fa.h|:|me Hikin{ava |

Arguments: [-op {repnsitnry}{:}{classpath}{:ﬁ%;ihrary} {classname} {aroament

CArguments Key

{repository} = content of repository (development classpath)
{classpath} = classpath

{bootclasspath} = system classpath

{library} = system library path

{classname}l = name of class to be executed

{arguments} = command-line arguments to pass to the Java application (nn
{jJava.home} = JDE installation directory

{f} = file name separator character

{:}

lclass-)path separator character

(8]53 Cancel

Note: The { ar gument s} substitution code uses any arguments entered in the Ar gunent s
property of the class being run.

Tip: Ifyou use alot of different service types, you can save time by incorporating them into object
templates, which you then can use each time you create a new object. Just create a generic
class, set the desired service types on the class’s property sheet, and then save the class as a
template. For more information, see “Creating new objects from templates” on page 148.

Editing service types from the Repository

You can also access the property sheet for the different service types from the property sheet of an
individual class’s Repository node.

To access a service type’s property sheet from the Repository
1 Select a class under the Repository tab in the Explorer and open its property sheet.

2 Under the Execution tab of the property sheet, select the Conpi | er (or Execut or or
Debugger) property and then press the ... button to invoke the custom property editor.

75

Chapter 4: Developing Java Applications

3 In the list on the left side of the custom property editor, select the compiler/executor/debugger
you want to modify. The property sheet for that service type will appear. (You can select the
Ext ernal Conpiler (or External Executor or Debugger) property and press the ...
button in order to edit the service type’s process and arguments.)

Note: When you reconfigure a service type, even if you are invoking the custom property editor(s)
from the property sheet of a class, the changes you make to the service type will affect all
other classes that use that service type.

Removing service types

To remove a service type:

a Right-click on the service type’s node in the Explorer and select Delete from the context menu.

Note: Itis not possible to delete the default service type for a given category.

Searching Javadoc

Forte for Java Community Edition 1.0 comes with a module that allows you to easily browse standard
API documentation and other Javadoc files from within the IDE.

Preparing the Javadoc Repository

Before you can do Javadoc searches within the IDE, you need to add directories (or JAR or ZIP files)
with standard API documentation to the search path.

There should be two directories already mounted in the Javadoc Repository (the Javadoc tab in the
Explorer):

* the Java API docs directory (if it is installed under the JavaO 2 installation directory). It will
appear there with a name such as / usr/j dk1. 2. 2/ docs/ api .

e the Javadoc directory (which can be found in the root of the IDE’s installation directory).

Note: By default, the Java API docs directory is set to hidden, meaning it will not be displayed in
the main Repository (under the Repository tab). If you would like to have it displayed in the
main Repository (in addition to the Javadoc Repository), go to the Project Settings tab in the
Explorer, expand the Proj ect Settings / Repository Settings node, select the
Java API directory node and set its Hi dden property to Fal se.

76

Chapter 4: Developing Java Applications

If neither directory is present or you would like to add a new directory with Javadoc documentation,
you can add them by following this procedure.

To add a Javadoc documentation directory to the Javadoc Repository:

1 In the Explorer, select the Javadoc tab, right-click on the Javadoc node, and choose Add
Directory... from the popup menu. (If you are adding a JAR or ZIP file with Javadoc
documentation, choose Add JAR... for JAR or ZIP files).

& Explorer [Javadoc] =] B3
a[nle] (v @
Javad : 12 1 | 5| | 3
& = I .ﬂ-.dc[:gredury... Vijavados
Acd JAR..
Tool=z ¥
Properties
‘ g Repositary L ﬁij Javadoo L :.T_;..' Runtime |
<% Project Seftings Lﬂ Zlobal Settings |

2 In the Mount Directory dialog (or Mount JAR Archive dialog when mounting a JAR or ZIP
archive) that appears, choose the directory with the Javadoc documentation.

When selecting the Javadoc documentation directory, you should look at all original documentation
distributed with the SDK and be sure that it has an i ndex-fi | es directory ori ndex-al | . ht m
file in the top level or the second level of its hierarchy.

@ Explorer [D:\Software\jdk122\docs\api] =] B3
=[6/e) (1] [
Javadoc] g I - 9 9
@ (= DrwnZippedBuildd29_Entryd javadoo =
@ (= I'\Softwareidk] 22 \docsiapi) |[| Hidlclen True
@ | |index-files % Read Only Falze
& .
. j ::::x ||| Roct pirectory Dr\Sothwareijdkd 22dog
@ 1o > ||| walic True
@ Repositaty L Jé:;j Javadoc L E Rurtime |
@' Project Settings Lﬂ Global Settings: | Propetties

Searching in Javadoc directories

Once the Javadoc directory is installed, you can begin searching Javadoc documentation from within
the IDE’s JavaDoc module.

77

Chapter 4: Developing Java Applications

To search on Javadoc documentation, either:

1 Invoke the JavaDoc Search Tool dialog by pressing CTRL+F1 or selecting Help | JavaDoc Index
Search from the Main Window.

2 Use the combo box in the dialog to type or select the search string, and then press Find or press
ENTER on your keyboard.

or:

a Select the string or click on the word you want to search in the Editor window, and then press
CTRL+F1 or select JavaDoc Index Search from the Help menu.

The JavaDoc Sear ch Tool will then begin searching for your string.

B2 Javadoc Search Tool =] E3
Container b | Fird | el [1% == |

B Container - class java.awt Container. {] 0 ,gi @ E
@ Cortainer() - Constructor far class java.awt . Container

B Cortainertdapter - class java.avﬂ&vemﬁnmainer.&da public abstract class ContainerAdapter
& Cortainer Adapter() - Constructor class java.awt e extends Ohigct

B ContainerEvent - clazs java.awt event. ContainerEvent.

[1]

implements_ContainerListener

@ CortainerEvent(Component, int, Component] - Construd

= ContainerListener - interface java.awt event.Containerl L
An abstract adapter class for receiving

container events. The methods in this class

are empty. This class exists as convenience [
| EE 7

Search dialog

The top part of the JavaDoc Search Tool dialog consists of a combo box for selecting or typing the
search string, the Find button for starting the search (after the search is started, it changes to Stop).

The three icons to the right of the Find button serve as toggles for sorting the pages found. Selecting
the first sorts the items alphabetically, selecting the second sorts by package and alphabetically, and
the third sorts by element (exceptions, classes, constructors, etc.).

Below the combo box and icons are two panes. The first pane displays pages found in the search, and
the second pane shows the page selected in the first pane. The left pane can be expanded to cover the
whole dialog area by deselecting the icon to the right of the sort icons. The size of the panes can be
changed by dragging the divider in the center.

78

Chapter 4: Developing Java Applications

Using Javadoc Auto Comment

The Auto Comment utility enables you to comment your source code automatically and view all parts
of your source code (methods, constructors, inner classes, variables etc.) and document them
individually.

Auto Comment Tool dialog

You can open the Auto Comment Tool dialog by right-clicking on a source file or one of its elements
in the Explorer or Object Browser and choosing Tools | Auto Comment.... The AutoComment Tool
dialog consists of two panes, seven filter icons and four buttons.

© Auto Comment Tool =] E3
8 e a7 a
E & public Memary'view Edit Comment...
& public Memaryiew ()
@ public void acdiatity ¢) PIIC LT et
b

@ public void removerotify (3 gy SOLFCe
,&, & public static woid main (javalang String]

Refresh

Detailz

The tag for the parameter args is missing.

The first pane lists constructors, variables and other elements for comment. Below that, the
Det ai | s pane shows information about missing or invalid comments on the item selected in the
first pane.

The first three filter icons, respectively, enable you to view class elements

1. with completely valid comments

79

Chapter 4: Developing Java Applications

2. with partially valid comments (something could be missing or invalid in the Javadoc tags)
3. without comment

The next four icons are filters which enable you to view public, none, protected and private elements
of class source.

The dialog also includes the following buttons:

* Edit Comment... — invokes the JavaDoc Comment dialog, where you can edit the comment. See
the following section for more information.

* Auto-Correct... — opens Javadoc Comment window and automatically corrects any errors in the
tags.

* View Source — opens the source file which you are currently documenting and moves the caret to
the element selected in the JavaDoc Comment dialog.

* Refresh— refreshes the display in the first pane to reflect any changes made in the source file (e.g.
through the Editor).

JavaDoc Comment dialog

The JavaDoc Comment dialog lets you add comments to class elements separately.

To open the JavaDoc Comment dialog:

pY

a Press Edit Comment in the AutoComment Tool dialog; or

a Open the property sheet for the element you want to document, click on the value of the
JavaDoc Comment property, and then click on the ... button that appears.

80

Chapter 4: Developing Java Applications

H Javadoc Comment
rJavadoc Cammert Text
1l Frame to display amount of free memory in the running application.
2 <P
3 Handy for use with NetBeans Developer's internal execution. Then the statia/ "
4 of free memory in the whole environment iz displaved.
-
1 | ¥
~Tags
ieersion 1.0 [% Pew
Delete
hlave Lip
hlovve D
Marme: Erversion -
Description: |1 1.0
1
ik Cancel

The JavaDoc Comment dialog has two main panes. The JavaDoc Comment Text pane displays
comment text. The Tags pane displays all Javadoc tags used in the comment. When you select a
Javadoc tag, a combo box appears along with the Description text field. (If the @ ee tag is selected,
two read-only text areas named Cl ass and Type also appear.)

In the Description pane, you can change the description of the Javadoc tag selected in the combo
box. In the combo box you can change the selected Javadoc tag to another Javadoc tag.

There are four buttons on the right side of the Tags pane:

* New—invokes the New Tag dialog, which allows you to choose from predefined Javadoc tags or
type another tag. It is element sensitive, so only appropriate tags on class members are shown.

81

Chapter 4: Developing Java Applications

. Delete — deletes the selected tag in the Tags combo box.

* Move Up and Move Down — change the order of the Javadoc tags in the comment by moving the
selected tag up or down.

On the bottom of the JavaDoc Comment dialog are buttons with predefined HTML tags

and the Javadoc{ @ i nk} tag, which you can add to your comment and have displayed in the JavaDoc
Comment Text pane.

Press OK to accept all changes or Cancel to reject all changes.

Note: For detailed information about Javadoc tags, visit Sun's Javadoc web page, at
http://java.sun.com/products/jdk/1.2/docs/tooldocs/solatis /javadoc.html#javadoctags.

Generating Javadoc documentation

You can have documentation for entire classes and packages generated automatically.

To generate Javadoc documentation:

1 Select the packages and/or soutce files for which you would like to create documentation in the
Explorer (under the Repository tab) or in the Object Browser (Packages pane only).

2 Right-click on the object’s node and select Tools | Generate JavaDoc from the context menu. A
dialog appear asking you to name the directory where you want the Javadoc documentation
generated.

By default, the generated Javadoc documentation will be stored in the directory j avadoc in the
IDE’s home directory.

JavaDoc module properties

There are property sheets for both Internal Javadoc and Standard Doclet.

To view or change Javadoc properties:

1 Expand the Proj ect Settings / Docunentati on node in the Explorer.

2 Select thel nt ernal Javadoc or St andard Docl et node.

3 Select the Toggle Property Sheet icon or right-click on the node and select Properties from the

context menu.

For more information on Javadoc properties, go to the Javadoc page on Sun’s website:
http://java.sun.com/products/idk/1.2/docs/tooldocs/solaris/javadoc.html.

82

Chapter 4: Developing Java Applications

Changing the directory for generated Javadoc
documentation

To change the directory for generated documentation:
1 Open the property sheet for Project Settings | Documentation | Standard Doclet.

2 Sclect the Dest i nat i on property and change the directory manually or click the ... button that
appears to invoke the File Chooser and change it that way.

83

Chapter 5

Developing Visual Classes

This chapter details how to create visual forms in Java with Forte for Java Community Edition 1.0,
using the Form Editor, templates, and other features that make the development process itself more
visual and intuitive. You will also learn how to add new JavaBeans to the IDE for use in your
development work.

Designing visually with the Form Editor

Perhaps the most significant feature that an IDE can provide for a developer is assistance in
designing graphical interfaces for applications and applets. For this purpose, Forte for Java
Community Edition 1.0 provides the Form Editor, which allows you to build your forms visually

Chapter 5: Developing Visua Classes

and have the code for them automatically generated.

@ Form [NewWindow] =] B3
flEr
l’\\S [iTextFiglc
| jButton | | jButton2 | | jButton3 |

The Form Editor, with its powerful open design based on JavaBeans architecture, allows you
immediately to use any JavaBean for visual development. Because they use standard AWT and JFC
components, generated forms do not depend on any proprietary code or components. No classes
need to be bundled with your forms as the Form Editor generates code that is entirely independent
of the IDE (unless you use Absolute Layout, a special Forte for Java feature).

Opening the Form Editor

To open a Form Editor window for existing forms, double-click on the form object in the Repository
or select Open from its popup menu.

When a form is opened, three windows are displayed:
1. Form Editor window — the design-time view of the form.

2. Editor window — contains the Java source for the form. If the Editor is already open, the form
is opened on a new tab within that Editor window.

3. Component Inspector — displays the hierarchy of components on the active form, including
non-visual components such as the layout manager and menus. The current selection of
components is highlighted. Tabs on the property sheet in the bottom panel display the synthetic,
general, and layout properties as well as the events of the selected component. See “Property

85

Chapter 5: Developing Visua Classes

Sheet pane in the Component Inspector” on page 90.

[= = 1=l

= Component Inspector [=] E -al_':ll A || B FirstApp =
il & Form [FirstApp] [_ (O] x| 174
- Ll 2 # Firstapp. java
3 *
4 F Cregted on August 27, 1999, 1i:46 AM
5 #7
g
7
g
Q /:(-*
0 #
11 # @author pkeegan
o i s e 12 # @rersion
*
generate center True 13 <
14 public class Firstapp extends javaw. swing. JFrame |
generate position True 15
generate size True 18 AEF Cregtes pew form Firstidpp #7
menu bar (Mo henu) 17 public Firstipp(] {
18 initComponents ()
19 pack ();
20 L
—l\Svnthetic: LPrc-perties LExpert LEV&ntSl e . . o
2 A*F This method 1s called from within the comstructor to
23 # initialize the Fform.

Note: In Forte for Java Community Edition 1.0, forms are stored in XML format. When opening
forms saved with NetBeans Developer 2.0, 2.1, X2 or early betas of 3.0, you will be asked
whether you want to convert the form to new format. If you click No, the form editor will
have the same features as in X2 and the saved form will be compatible with X2. However,
some of the new features, such as multiple property editors per property and most synthetic
properties on components, will not be available. If you click Yes, the form will be saved in the
new format, and it will not be possible to open it in these versions of NetBeans Developer.

Creating a new form

Use the New From Template command to create a new form from template and open it in the Form

Editor.

Forte for Java supports nine basic form types from both the Java Abstract Windowing Toolkit (AWT)
and the newer Swing API. The table below lists them.

Table 4: Basic form types supported by Forte for Java

Name Description
Frame AWT Frame (top-level application window).
Dialog AWT Dialog (modal or non-modal window for user feedback).
Applet AWT Applet (embeddable program run by a Web browser or other applet

viewer).

86

Chapter 5: Developing Visua Classes

Name Description

Panel AWT Panel (container for holding parts of an interface—can in turn be
used in any other container, such as a Frame, Panel, Applet, or Dialog).

Frame Swing JFrame (top-level application window).
8 P pp
JDialog Swing JDialog (modal or non-modal window for user feedback).
Applet Swing JApplet (embeddable program run by a Web browser or other
pp g8JAPP prog y
applet viewer).
JPanel Swing JPanel (lightweight container for holding parts of an interface—
within any container, such as a JFrame, JPanel, JApplet, or JDialog).
JInternalFrame Swing JInternalFrame (lightweight object with many of the features of a
native Frame, used as a “window within a window” within a JDesktop-
Pane).

Note that the table lists only the basic types which differ both in design-time look and in the code
generated for the form's class. Customized forms (for example, a dialog with OK and Cancel buttons)
and customized user classes (derived from one of the container classes above) can also be created and
then saved as new templates. See “Creating your own templates” on page 150.

Working with components

Once you have created a new form, the first thing you probably want to do is to add components to
it in order to create functionality. This section describes how to add and modify components in the
Form Editor.

‘ [% r.ﬂ.W rSWing |/Swing2 |/Eleans |/La':.ﬂ:|uts rEDrders |

\ o | Az (BB~ |2l |8 e E O =28

For more information on individual Swing components, see Sun’s Swing tutorial at
http://java.sun.com/docs/books/tutorial /uiswing/components/components.html.

Adding new components

The easiest way to add components is by using the Component Palette. The Component Palette is a
toolbar on the Main Window, which holds commonly used visual components that you can add to
forms. You can add a component merely by clicking on the component in the Palette and then
clicking on the form in the Form Editor window. You can also add your own components to the
Component Palette. See “Customizing the Component Palette” on page 155 for more information.

87

Chapter 5: Developing Visua Classes

Add mode

|] s |
& HEE

To add a component using the Component Palette:

1 Choose a component in the Component Palette by clicking on its icon. (The add/selection mode
icon shown in the figure above will become unselected, showing that the Form Editor is in “add
mode”.)

2 Click on the Form Editor window to add the component to the form. You can add multiple
components of the same type by holding down the SHIFT key and clicking multiple times.

The Palette automatically changes to selection mode (the add/selection icon becomes selected)
after the component has been added to the form (and the SHIFT key has been released).

Depending on the layout used, you can add a component (or move it by dragging it) to a specific
position (Border and Absolute layouts) and/or set the default size of the component by dragging
the mouse on the selection handles (Absolute Layout).

To add a component using the Explorer:

1 Under Reposi t ory in the Explorer, find the class of the JavaBean you want to add.

2 Right-click on the class and select Copy from the popup menu.

3 Choose Paste from the popup menu of either the Component Inspector or the Form Editor.

Selecting components

You can select components in the Form Editor either directly in the Form Editor window when in
selection mode (the default mode, shown in the figure below) or by selecting component nodes in the
Component Inspector's tree. To select multiple components when clicking on the Form Editor
window, hold down the CTRL key as you select them.

Selection mode

|| 5] e s |
& EEE

The Component Inspector displays the current selection on the active Form Editor window. Its
property sheet displays the properties of the selected component—or, if more than one component
is selected, their common properties are displayed. To select a component in the Component
Inspector's tree, click on it. To select multiple components, hold down the CTRL key and click each
one. You can also select a consecutive group of components by clicking on the first one, holding the

88

Chapter 5: Developing Visua Classes

SHIFT key and then clicking on the last component in the group.

Connection mode

In connection mode, you can start the Connection Wizard, in which you can link two components
together with an event.

Connection mode

[(Awr rSWing|
[EEE

See “Using the Connection Wizard” on page 104 for more information.

Copying components

To copy or move components:

1 Select the item in the Component Inspector or the Form Editor window (hold down the SHIFT
or CTRL key to enable selecting of more than one item).

2 Right-click the item(s) and select Cut or Copy from the popup menu.
3 Choose the destination container in the Component Inspector or the Form Editor window and

select Paste on its popup menu.

The components will be copied with all properties and events intact — although events are maintained
only if copying within the same form.

Reordering components

A container is a Java visual component (e.g. a Panel) that can contain other components. (Examples
of containers are the AWT Dialog, Frame, and Panel, as well as the Swing JPanel, JDialog and
JFrame.) The order of components within their parent container may determine the order in which
they appear visually. For some layouts (such as Flow Layout), modifying the order is the only way to
modify the way components are laid out.

To change the order of components in the Component Inspector, either:

a Right-click on the component you want to move, and use the Move Up or Move Down items in its
context menu; or

a Right-click on the parent container and choose Change Order from its context menu. You will get
a popup menu for setting the order of all subcomponents in the container.

89

Chapter 5: Developing Visua Classes

Property Sheet pane in the Component Inspector

The lower pane of the Component Inspector displays the property sheet for the object selected in the
upper pane. The property sheet contains up to four categories, represented by the tabs Synthetic,

Properties, Layout, and Events.

2] %) 2] | &

hackoground [[204 204 204] :
CurEor [irit] :
defaultClozeCperstiol| HIDE_OM_CLOSE

faort Lialag 10 Flain
foreground il

iconimange =Maot Set=
layou “hlot Set= K=
menuBar =Mot Set=

Marme frame1 -

=ynthetic | Propetties LExpert LEventsl

Depending on the property, properties can be edited by:

* clicking on the current value and typing in a new one (you must press the ENTER key for the

new value to be accepted)

* double-clicking on the property name or value to toggle a boolean

. clicking on the value and then selecting from the drop-down list that activates.

iconlmage

=hlot Set=

e clicking on the value and then selecting the ... button that appears. Clicking on this button
invokes a custom property editor dialog.

Custom property editors for component properties

When you invoke the custom property editor for a property of a form component, the Property
Editor dialog that appears may have more than one tab. For example, properties on the Properties tab
have an Form Connection property editor associated with them (see “Using the Form Connection

90

Chapter 5: Developing Visua Classes

property editor” on page 100).

Property Editor: iconlmage (Ima... &4
| perty q

— izet Parameter From:

alle: %

Bean:

i Sroperty: =Moo Property Selecte. .

i Method Call:
() User Coder |1 =S
1 | :1:::::::| | .'l
Detault Ok cancel

Reverting to the default value for a property

If you have changed a value that you later decide you would like to change back to its default,
right-click on the property name and select Set Default Value from the context menu. If the value was
changed in a custom property editor, you must select the Default button in the custom property editor
to revert to the default.

Working with layouts

A layout manager is a special Java class which manages the positions and sizes of components in a
container (Frame, Panel, or any other visual component that can contain other components).

The Forte for Java Community Edition 1.0 Form Editor has advanced support for layout managers.
In addition to absolute positioning, complex forms based on Flow Layout, Border Layout, Card
Layout, Grid Layout, GridBag Layout or Swing's Box Layout are supported. (See “Standard layout
managers” on page 94 for descriptions of these layout managers.)

Various containers come with different predefined layout managers:
. Frame, JFrame, Dialog, JDialog, and JInternalFrame have the Border Layout by default.
e Panel and JPanel have Flow Layout as the default layout.

Layout managers do not apply to all containers. For example, ScrollPane, JScrollPane, JTabbedPane,
JLayeredPane/JDesktopPane, and JSplitPane have their own default layouts which cannot be
changed.

91

Chapter 5: Developing Visua Classes

Setting and changing layout managers

To change the layout manager:
1 Select the desired layout in the Layouts tab of the Component Palette.

2 On the form, click inside the container whose layout you want to change.

Or:

1 Right-click on the target container — either an empty part of the form in the Form Editor window
ot the node for the container or current layout in the Component Inspector.

© Form [FirstApp] -10] %]

Events]
=it Layout L DesignFlovwLayout
Custamize Leyot. .. DezignBorderLayout
Change Ordet Designabsolutel syout
Elie B DesignGridLayaut
Goto Source DesignBoxLayout
Goto Inspector DesignridBagl ayout
DesignCardLayout

Propetties
2 Change the layout using the Set Layout submenu.

Note: When you change layouts, the IDE remembers the constraints used on the discarded layout.
Therefore, if you change the layout back, it looks the same as it last looked in that layout. The
only exception to this is when you switch from Absolute Layout to GridBag Layout. When
you switch from Absolute to GridBag, the GridBag constraints are created so that the
GridBag Layout looks as close as possible to the previous Absolute Layout. See “Standard
layout managers” on page 94 for more information on the various layouts.

Setting layout properties and constraints

You can modify the appearance of a container on your form by setting general properties for the
layout manager and constraints for the individual components in the layout.

Layout properties

The layout properties allow you to modify the layout manager's overall settings, such as the horizontal
and vertical gap and alignment. The properties vary depending on the layout manager. Some layout

92

Chapter 5: Developing Visua Classes

managers do not have any properties.

To set layout properties:

a Select the layout managet’s node in the Component Inspectot. The layout properties will then
appear in the Property Sheet pane.

= Component Inspector [H[=] E3

@ 1 Mon-visual Components
% BorderLayout
[f=] [Textireal [JTextires)]

28] i) K] | &

Harizontal Gap]
Yerical Gap 1]

Properties

Constraints properties

These are the layout properties specific to each component managed by the layout manager. For
example, when Border layout is used, the Di r ect i on property is set according to which of the five
parts of the form the component resides in (the possible values being Nor t h, Sout h, West , East
and Cent er).

To view or set constraints properties:

93

Chapter 5: Developing Visua Classes

a Select the component in the Component Inspector and choose the Layout tab.

@ 1 Mon-visual Components
% GridBagLayout
[#=] [Textireal [JTextires]
i %] %) =] | &
Anchor Center :
Fill Mane
Grid Height 1
Gric Wyictth 1
Grid X Relative
Grid ¥ Relative]
Insets [0,0,0,0
Internal Padding x] =
Syrthetic L Properties
Expert | La Events

Standard layout managers

Border Layout

A Border Layout allows components in a container to be arranged in five positions: Cent er (which
expands to fill any empty space left in the other four parts of the component) and along the four
sides Nor t h, West , Sout h, and East . Components in the Nor t h and Sout h positions
automatically expand horizontally to take up the whole space, and the West and East components
automatically expand vertically. The horizontal and vertical gap properties control spacing between
the components.

Flow Layout

A Flow Layout arranges components in a container like words on a page: it fills the top line from left
to right, then does the same with the lines below. You can specify the alignment of the rows (I ef t |
center,right). You can also set the horizontal spacing between components and the vertical
spacing between rows.

94

Chapter 5: Developing Visua Classes

Grid Layout

The Grid Layout divides its Container into a configurable number of rows and columns. Like the
Flow Layout, components are added to the grid from left to right and top to bottom. But unlike Flow
Layout, the dimensions of the grid are fixed; individual components aren't allowed to have different
sizes.

Card Layout

Think of a Card Layout as a deck of cards. Only one component (“the top card”) is visible at a time
and each component (“card”) is the same size. In the Properties sheet, you can set the Cur r ent
Car d property to car d1, car d2, etc. In code, the methods show, next , previ ous, fi rst, and
| ast can be used to select cards. For example, the following code selects the next card in panel 1
when but t onl is clicked:

private void buttonlActionPerforned(java.awt.event. Acti onEvent
evt) {
/1 Add your handling code here:
CardLayout cards = (CardLayout) panel 1. get Layout ();
cards. next (panel 1) ;

}

Also see the JTabbedPane component. It implements a similar layout with a labeled tab for each
component.

GridBag Layout

GridBag Layout (not to be confused with Grid Layout) lets you set almost any layout you want using
a complex set of constraints. You can create a GridBag layout one of the following three ways:

. By using Forte for Java’s Customize Layout... command on a form to invoke the customizer
dialog, which allows you to visually adjust the placement and constraints of the components. See
“Using the GridBag customizer” on page 97 for more information.

e By setting the constraints yourself under the Layout tab of the Property Sheet of every
component within the layout.

* By creating an Absolute Layout and then switching to GridBag to have the constraints code
generated automatically. If you use this option, you may want to go back and polish up the
details using the two previous options.

GridBag Layout is particularly useful for multi-platform Java applications, because it allows you to
create a free-form layout that maintains a consistent appearance, even when the platform and look
and feel change.

95

Chapter 5: Developing Visua Classes

Box Layout

The Box Layout is part of the Swing API. It lets multiple components be arranged either vertically
(along the Y axis) or horizontally (on the X axis). Components don't wrap — even when the container
is resized. By default they are arranged from left to right or top to bottom in the order they are added
to the container. See “Reordering components” on page 89 for changing the order of the elements.
Box Layout is similar to Grid Layout, except that it is one-dimensional (i.e. there can be multiple
components on one axis but not both).

Absolute Layout

Absolute Layout is a design aid that allows you to place components exactly where you want to in the
form and move them around by dragging. Ease of use makes this layout particularly useful for making
prototypes. You do not have enter any property settings and there are no formal limitations within
the layout. It is a substitute for “null” layout and provides and places components in absolute
positions more cleanly.

You can have a grid displayed on the Form Editor window when using Absolute
= Layout by pressing the Show Grid icon.
ﬂ [Y yPp g

Important: Absolute Layout is not recommended for production applications. The
fixed location of components in the form does not change, even when the
environment changes. Therefore significant distortions in appearance can occur
when such an application is run on a different platform or using look and feel
different than the one in which it was created. If you design a form using Absolute
Layout, it is recommended that you switch the layout manager to GridBag Layout and then
fine tune it before you distribute the application.

oy i

‘i‘,r

Note: Absolute Layout is not in the standard Java layout sets. Rather, it is provided with the IDE
and can be found at com net beans. devel oper. awt . Absol ut eLayout and
com net beans. devel oper. awt . Absol ut eConst rai nts. If you do keep Absolute
Layout in your application, these two classes must be distributed with it. They are ready for
deployment in the Absol ut eLayout . zi p file (in the %-ORTE4J_HOVE% | i b/ ext
directory). You can freely redistribute this archive with applications developed with the Forte
for Java IDE. The source code is also redistributable and is available in
%-ORTE4J___HOVE% sour ces/ conl net beans/ devel oper/ aw .

Null Layout
You can also disable Absolute Layout and design forms with a null layout if you wish.

To use null layout:

1 Under the Project Settings tab of the Explorer, select the For m Obj ect s node and switch the
value of its Generate Nul | Layout property to Tr ue.

2 When designing your form, select the Absolute Layout layout manager.

96

Chapter 5: Developing Visua Classes

Using the GridBag customizer

Forte for Java Community Edition 1.0 provides a customizer to simplify the creation of GridBag
layouts.

To use the visual GridBag customizer:

1 Add the components you want to use and make sure that you have GridBag Layout set.

Note:It is helpful to sketch out the way you want your layout to look before you open the
customizer.

2 Right-click on the Gri dBagLayout node in the Component Inspector and select Customize
Layout... from the context menu, or select the Customize button on the Property Sheet pane. The
Customizer Dialog will open with a property sheet for GridBag constraints in its left pane and a
rough depiction of the placement of your components on the form in its right pane.

[Customizer Dialog

820 2% <] [&

Gril X 1
Grid 0
Grid Wicith 1
Grid Height 1
Fill Morne

Internal Padding = |(O
Internal Padding ¥ |(O

Inzets [0, 0,0,0]
Anchar Center
Wigight X oo
Wigight % oo
[Button I‘ Button2 |
Propetties
rAnchar rnset

==]=] me
o_BORIE
efs]a] | '—

ES

Fill \ak
T=+
| T z
- @ [=+
-
r-Padding riGrid Size
o[+ o]z
e - 1
1=l 1 Cel

3 You can reposition the components in the right pane by dragging them. As you drag, the
component, its Gi d Xand Gi d Y properties will change to reflect its new position. (Be aware,
however, that this panel only serves as a rough guide and does not reflect the absolute positions

97

Chapter 5: Developing Visua Classes

of the components. The position of each component is largely governed by other constraints set
in the left pane. The Form Editor window more closely reflects how the components will look.)
You can also change these values manually in the left pane (remember to press ENTER after
entering the value).

4 Once you have the approximate position of the components, you can adjust the other constraints
of each component in the left pane. Follow these steps (in whatever order you prefer) to position
each component:

a.

b.

Select a component in the right pane.

Further adjust its horizontal and vertical position if necessary by setting its X and Y grid
positions.

Note:When you directly enter values for the constraints, remember to press ENTER to make
the change (otherwise the property reverts to its previous value).

Adjust the Gid Wdthand Gri d Hei ght parameters to determine how many grid
positions are allocated for the component in each direction. The values of Remai nder
(allocates the rest of the space in the given row or column for the component) and

Rel at i ve are also available.

You can also adjust these settings with the Grid Width buttons. Pushing the right-most
button with yellow shading in each group sets the value to Remai nder .

Adjust the weight settings of the component to determine how much space it should be given
relative to that of the other components. For example, a component with a Wei ght X value
of .5 has twice as much horizontal space allotted to it as a component with a value of .25 for
this parameter. The sum of the values of the components in a given row or column should
not add up to more than one. When a form is resized, these settings affect which components
are resized (and by how much). Components with a value of 0 for one of these parameters
retain their preferred size for that dimension.

Adjust the insets for the component. The insets determine the amount of free space on each
of the four sides of the component.

You can enter numbers for these manually or use the inset buttons on the bottom part of the
left pane. These buttons are divided into four sets. The top group allows you to increase and
lower the inset for each side separately. The second group allows you to change the left and
right insets simultaneously. The third group lets you change the top and bottom insets
simultaneously. The fourth group allows you to change all insets simultaneously.

As you change the insets, you will see the inset area marked by yellow change in the right

pane.

The internal padding settings allow you to increase the horizontal and vertical dimensions of
the component. You can adjust these by directly entering numbers for the properties or by
using the internal padding buttons.

As you adjust these constraints, you can see the selected component in the right pane expand
ot contract vertically and/or horizontally, according the changes you make.

The Fi | | constraint allows you to choose whether the component will use all of the vertical
and/or horizontal space allocated to it. Any space allocated to a component that the

98

Chapter 5: Developing Visua Classes

component does not fill is marked with blue in the right pane.

h. The Anchor constraint allows you to place the component in one of nine positions within
the space allocated to it (Cent er , Nor t h, Nor t hWest | etc.). This setting has no effect if
there is no free space remaining for the component.

Support for custom layout managers

It is also possible to use custom layout managers in the Form Editor. Any layout manager with a
default constructor and which does not use constraints for adding components can be used in the
Form Editor when designing.

Important:When adding custom layout managers that do not follow these criteria, you must follow
the specifications of the Forte for Java Layout Managers API in order to be able to use the
layout manager in the Form Editor. See the NetBeans website for more information on
obtaining and using the Forte for Java Layout Managers APIL

To install a custom layout manager

1 Add the directory or JAR archive containing the layout manager’s source or class to the
Repository.

2 Install the custom layout manager in the Component Palette by copying the layout manager’s class
from the Repository to a Palette category under G obal Settings / Conponent
Pal ette.

Working with source code

The Editor window displays the code for the active opened form. The source code is always
synchronized with the visual appearance of the form. Every change made in the Form Editor window
or the Component Inspector is immediately reflected in the source code.

Non-editable blocks

Some parts of the source code generated by the Form Editor are not editable manually. The
background of non-editable text is shaded. Non-editable text includes:

. the block of variable declarations for the components on the form;

. the method i ni t Conponent s(), in which all the form initialization is performed (this
method is called from the form's constructor)

e header (and trailing closing brace) of all event handlers

Though guarded text generated by the Form Editor is not editable manually, you can affect the way it
is generated using the Form Connection custom property editors for the components in your form.

99

Chapter 5: Developing Visua Classes

See “Using the Form Connection property editor” on page 106.

Tip: If you want to perform some additional initializations of a form's components, you can do it
in the constructor after the call to the i ni t Conponents () method. For example, here
you can initialize a button group or set component labels from resource bundles.

External modifications

Forms are stored in two files:
e a.java file, which contains the (partly) generated Java source

e a.formfile, which stores layout manager properties, the properties and layout constraints of
JavaBean components on the form, and other information. This file does not need to be
distributed with your application. It is merely used to display the form in the Form Editor.

You can edit the . j ava files using external editors (not simultaneously while the form is being edited
in the IDE), with the following exceptions:

. Do not modify the content of the i ni t Conponents () method. The body of this method is
always regenerated when the form is opened.

* Do not remove or modify any of the special comments placed in the source by the IDE's Form
Editor (// GEN-...).They are required for the form to open correctly (These comments are
not visible inside Forte for Java's source editor.)

* Do not modify the block of variable declarations for components on the form. They are always
regenerated when the form is opened.

Form Editor modes

The Form Editor can be in one of three modes:

100

Chapter 5: Developing Visua Classes

Table 5: Form Editor modes

Toolbar Description

Design mode. This is the default Form Editor mode. By clicking on the form
you can select, add, or drag components. Note that in this mode, depending

1:[on the layout, the layout won't necessarily look the same as it does during

L
5]

run-time. This is because design would be difficult if every layout manager
worked exactly the same way at design time as it does during run time. For
example, with some layout managers, when you drop two components next to
each other, they could resize automatically and make it impossible to add a
new component between the two. So, if you need to see the effect of a certain
layout manager at run time, change the Form Editor from design mode to
either real mode or test mode.

Real mode. The Form Editor window displays the actual Java layout managers,
so the forms looks the way they will during run-time. You can select or add
1:[components, but dragging components is disabled.

1|
]

Test mode. Similar to real mode, the form behaves exactly the same as during
== | run-time. When clicking on the form, the mouse events are delivered to the
ﬂﬁ]:[| actual components. Thus, for example, a button looks “pressed” when you

— click on it. This mode is suitable for checking the look and feel of the form
without the need to compile and run it.

To switch between design and real mode, use the Design Mode icon (the square with a pound sign
inside) from the toolbar. If the icon is selected (as shown in the designh mode example above), you're
in design mode. Otherwise, you're in real mode.

Switching to test mode is done using the Test Mode icon on the toolbar; this is a toggle button, which
means you click to enable it and click again to disable. Note that switching test mode on disables the
Design Mode icon; to enable it again, test mode must be switched off.

These modes are kept separately for each form.

Note: When test mode is switched on, the form is resized to its preferred size — this is how it looks
if it is not explicitly resized by calling set Si ze() or set Bounds() .

Events

Events are managed through the component’s Events tab in the Component Inspector, which gives a
list that matches each event fired by an object with its corresponding handler method. There is also

101

Chapter 5: Developing Visua Classes

an Events entry on object popup menus in both the Component Inspector and Explorer.

= Component Inspector [... M=l E3
IFirs‘t.ﬂ-.pp [JFrame] |~ |

@ 1 Mon-visual Components
&= [jMenuBart [JMenuBar] B
- E jPopuphenud [JPopuphdenu] 5
% GridBaglayout
[f=] [Textireal [JTextires)] |
[= iButtond [JButon] -

28] i) K] | &

ancestorAdded =Mane=

ancestorhoved =MOnes=

ancestorRemoyed Eiplalpl-hy

caretPostionChanged| =nones=

component Added =Mane=
componertHidden =Mone:s
componentMoved Eiplalpl-hy

componentRemoved || <nones=

componentResized || =none=

LS\,fnthetic LF‘ru:uper‘ties LExper‘t |LE\-'=E — |

A new component does not have event handlers defined; the values are all <none>.

To define an event handler using the property sheet:

1 Select the Events tab in the form object’s property sheet (either in the Component Inspector or
Explorer).

102

Chapter 5: Developing Visua Classes

2 Click on the value (it should be <none>) of the one of the events in the list.

= Component Inspector [... =] E3
@ 1 Mon-visual Components B
@ [MenuBard [JMenuBar]
o E jPopuphenut [JPopuphlenu] =)
% GricdBagLayout
[+] Textireal [JTextires]

1]

[=] iButtond [JButton

2 0% % =] A

keyReleased =MIne= -
ke Typed =Mone:s

mouzeClicked =nanes=

mouzebragged =Manes=

mouseEntered =Mane=

maouseExited =nanes= =
maouzehiosedd =nanes=

maousePressed JBarMousglressed B
mouzeReleased =Mane= gl =

LS\,fnthetic LF‘ru:uper‘ties LExper‘t LEvents l_

3 Select a name for the event by:

e Pressing ENTER on your keyboard to have the default name automatically generated; or
¢ Typing a new name over the default name and pressing ENTER.

After you press ENTER, the code for the listener and the (empty) body of the handler method will
be generated. If you don't press ENTER, your changes will be ignored.

To define an event handler using the popup menu:
1 Right-click on the form object in the Explorer.

2 Select Events and then move through the two submenus to select the event. The default name will
be given to the event.

If multiple events are of the same type (for example, FocusGai ned and FocusLost are both of
type j ava. awt . event . FocusEvent), then you may use the same handler for all of them. For
example, you could set both FocusGai ned and FocusLost to use the but t on1FocusChange
handler. You can also have the same event on several components share a handler.

When you enter a new name for an existing handler, the code block is automatically edited to use the
new name. When you delete a name, the code block is deleted. If more than one handler uses the
same name (and the same block of code), deleting a single reference to the code will not delete the
code; only deleting all names will delete the corresponding code block, and a confirmation dialog will

103

Chapter 5: Developing Visua Classes

be displayed first.

Note: If you delete an event but don’t delete the event handler when prompted by the confirmation
dialog, an orphaned handler will remain in the guarded text. If you wish to delete the
orphaned handler, you will have to add another event, attach it to the handler, delete that
event, and then agree to delete the handler in the confirmation dialog.

Using the Connection Wizard

The Connection Wizard allows you to set events between two components without having to write
much (or any) code by hand. When you select two components to be “connected”, the first is the one
that will fire the event, and the second one will have its state affected by the event.

To start the Connection Wizard:

1Switch to connection mode on the Component Palette (see “Connection
mode” on page 89).

2Next, click on the two components (first the component with the source event
and then the target component). You can click on the form—or click in the
Component Inspector (which allows you to also use non-visual components as
parts of the connection).

The Connection Wizard opens to connect the selected components.

The Connection Wizard allows you to set the connection parameters in two or three steps:

Connection Source

The first step allows you to select the event of the source component on which the operation is to be

104

Chapter 5: Developing Visua Classes

performed and the name of event handler method generated.

Bl Connection Wizard - Step 1 of 3

—oonnection Source

Source Component. Popuphienu

Ewent:

& [ancestar

& [component

&= [T container

@=] focus

& [inputtethod

& [key

@ [mouse
D mouzeClicked
B mouzeEntered
D mouzeExited
B mouzePrefged
D mouseReleszed

& [mousehotion

@] popuphlenu

@] propertyChange

& [vetoableChange

—Event Handler Methiood

fethod Mame: |iPopupkenu MousePressed

Mext = Cancel

Note: If you select an event which already has an event handler attached (the name of the event
handler is visible in the tree of events after the event name — like act i onPer f or med
[buttonlActi onPer f or ned]), when clicking Next, you will be asked if you want to
delete the old event handler. If you answer yes, the old event handler is replaced with the
connection code when the Connection Wizard is finished.

Connection target

The second step allows you to specify the operation which is to be performed on the target
component. There are four options which can be changed using the radio buttons along the top of

105

Chapter 5: Developing Visua Classes

the dialog:

Set Property — allows you to set a property on the target component. In the next step you
specify the property value.

Bean —

Method Call — allows you to call a method on the target component. In the next step you
specify the parameters for the method call.

User Code — allows you to write the code by hand. When you select this option, the Next>
button changes to Finish, meaning there are no settings remaining in the wizard and the target
component is ignored by the wizard. The cursor in the editor is then placed into the new event
handler allowing you to write the handling code by hand.

Selecting property value or method parameters

If you have selected Set Property or Method Call in the previous step, the third step will allow you to
specify the values for the target property or parameters for calling the target method. If you selected
the Method Call, the dialog will display a list of all parameters types as tabs, where each tab represents
a single method parameter.

On each tab, you can set the source from which the value (of the specified type) is acquired:

Value — This option is available only if the value is a primitive type (i nt,f| oat, etc.) ora
St ri ng. You can enter the value into the text field.

Property — This option allows you to acquire the value from a property of a component on the
form. If you click on the ... button, a dialog will appear which will let you select the component
and its property. Note that only properties of the correct type are listed.

Method — This option allows you to acquire the value from a method call of a component on
the form. If you click on the ... button, a dialog will appear which will let you select the
component and its method. Note that only methods which return the correct type and which do
not take any parameters are listed.

User Code — This option allows you to write user code which is used as the parameter for the
setter of the selected property or a parameter of the selected method call.

If you click Finish, a new event handler will be generated with code reflecting the settings entered in
the second and third step.

Using the Form Connection property editor

Forte for Java Community Edition 1.0 also provides a connection feature that allow you greater

106

Chapter 5: Developing Visua Classes

control over the initialization code that is generated for properties of form components. You can
associate a method, a property, or your own code with the property. This property editor is
particularly useful, since initialization code is guarded text in the Editor and cannot be manually

edited.

To use the Form Connection property editor:

1 With the Component Inspector open on a form, select the property (under the Properties tab that
you would like to modify the initialization code for.

2 Press the ... button to invoke the custom property editor multi-tab dialog and select the Form
Connection tab.

3 In the dialog, select the type of code you would like to add (Value, Bean, Property, Method Call, or
User Code).

E Property Editor: actionCommand (String)

rStringEditor Farm Connection

— et Parameter From:

(o Value: |
Bean:
() Property:
) Method Call: l%
» User Code: [a

[4]

[*]

Advanced...

| Drefault H QK H Cancel ‘

If you select Property or Method Call, press the ... button to invoke a dialog with a list of properties
or methods available.

4 Once you have made your selection, click OK.

Pre- and post-initialization code

In the Form Connection property editor, you can also write code to be placed before or after the
initialization code for the modified property.

To place code before or after a property’s initializer:

1 In the property’s Form Connection property editor, click Advanced... to bring up the Advanced

107

Chapter 5: Developing Visua Classes

Initialization Code dialog.

2 Click either or both of the radio buttons (for Generate pre-initialization code or Generate
post-initialization code and enter the code you want to have generated in the appropriate text
fields.

Synthetic properties

Each component also has synthetic properties which you can set under the Synthetic tab in the
Property Sheet pane in the Component Inspector. These are:

¢ Code Generation — allows you to choose between generating standard or serialization code for
the component.

e Serialize To — allows you to set the name of the file for the component to be serialized to (if it
is serialized).

e Use Default Modifiers — If Tr ue, the component’s variable modifiers will be generated
according to the default modifiers set in the Var i abl es Modi fi er property set in the
property sheet for Proj ect Settings / Form Obj ects in the Explorer. If Fal se, the
Vari abl e Modi fi ers property will appear on the property sheet allowing you to set the
modifiers.

* Variable Name — allows you to change the variable name of the component in the code.

Menu editor

The Form Editor can be used to create and modify menus. The AWT and Swing variations of both
MenuBar and PopupMenu are supported.

Creating a menu bar

To create a new menu bar, click on an AWT or Swing menu bar component in the Component
Palette, as shown below. Then click anywhere on the form on which you want to add the menu. The
menu will appear under the Non- vi sual Conponent s list in the Component Inspector (since it
cannot be manipulated by the layout manager).

108

Chapter 5: Developing Visua Classes

Creating a menu bar

pI Eleansl Laa-‘u:uutsl Elurdersl

EE «» [A [B B
MenuEaﬂ

If this is the first menu bar you have added to this form, it will also appear visually on the form.
Please note that only the AWT MenuBar can be used as the main menu for AWT forms. The same is
true for Swing forms and the JMenuBar . It is possible to add the AWT MenuBar to Swing forms
and vice-versa, but you will not be able to use it as the displayed main menu for the form.

itz | Border=s |
08 = J = &

You can add multiple menu bars to one form, but only one of these can be used as the current menu
bar. (You can write code to switch the current menu bar when the form is running.) To change the
current menu, select the form in the Component Inspector and edit its Menu Bar property. You can
also switch the menu bars in user code while the form is running,.

Adding menus to the menu bar

Newly created menu bars come with one menu.

To add more menus:

1 Right-click on the menu bar under the Non- Vi sual Conponent s node of the form in the
Component Inspector.

2 Select New Menu (or New JMenu if you are using Swing components) from the popup menu.

Creating a popup menu

To add a popup menu to a form:

1 Click on the popup menu icon under the Swing or AWT tab in the Component Palette.

2 Click anywhere on the form to place it.

The new menu will appear under the Non- vi sual Conponent s list in the Component Inspector

(since it is not laid out by the layout manager). You can use the same editing features as with a menu
bar. To use the popup menu visually, write code like this:

109

Chapter 5: Developing Visua Classes

popupMenul. show (conponent, 100, 100);

where you want to show the popup menu. The API documentation that comes with the Java 2 SDK
has more details about displaying popup menus in its specifications for PopupMenu and
JPopupMenu.

Adding menu items

The Component Inspector displays the hierarchy of menu bars and popup menus under

Non-vi sual Conponents. Every menu (whether it is on a menu bar or it is a popup menu or
submenu) starts with one menu item, displayed as a subnode.

To add new menu items, submenus, or separators to a menu bar or popup menu:

1 In the Component Inspector, select the menu you would like to add an item to.

2 Right-click on the menu and select New and then the item you want from the submenu.

Menu item events

You can use the same mechanism for assigning event handlers to menu items as with any other
component. For menu items, you can also add the Act i onLi st ener event handler by actually
selecting the item from the menu in the Form Editor window.

To add an event handler to a menu item:

1 Select the component in the Component Inspector and either use the popup menu or event
properties to attach the event handler.

2 Use the Connection Wizard by clicking on the Connect icon and then (in the Component
Inspector) clicking on the connection source and target. See “Using the Connection Wizard” on
page 104.

Components with special support

Forte for Java Community Edition 1.0's Java-based architecture allows it to support interactive design
with components including the AWT ScrollPane and the Swing JScrollPane, JTabbedPane, JTable,
JList, J]DesktopPane, and JSplitPane.

In general, these components are used the same way as other components. Forte for Java provides

special support in the form of features such as custom property editors which simplify some of the
more complex aspects of designing forms.

110

Chapter 5: Developing Visua Classes

JScrollPane, ScrollPane

In many cases, AWT components pop up their own scroll bars if their content needs to scroll. An
AWT ScrollPane is available, though, to add scrolling where it is needed. Swing components,
however, must be added to a JScrollPane if the content is to scroll. This document will not cover
other differences between ScrollPane and JScrollPane. See the Java reference materials and tutorials
for these particular classes. We'll discuss JScrollPane as it is more frequently needed (and it is generally
preferable to use Swing components).

To use a JScrollPane, choose it from the Component Palette and click on the Form Editor window.
Then select the component to be added from the Palette to the JScrollPane and then click on the
JScrollPane.

Remember that you can still select the underlying JScrollPane (for instance, to set its scrolling
properties) by clicking on its entry in the Component Inspector.

JTabbedPane

A JTabbedPane manages multiple components (usually JPanels with their own layouts and
sub-components) within its pane. The IDE automatically gives each component its own labeled tab.
When the user clicks on the tab, its component is selected and comes to the front of other
components.

R Component Inspector [... W= E

E MewTabbedPane [JFrame]
5 Mon-visual Components

F, FlowLayout

=[] jPanet [JPanel]

-2 FlowLayout

ﬁ iTabbedPane! [JTabbedPans]

£ Tabled [JTable]

[f=] jEditorPanet [JEditorPane]

= jProgreszBard [JProgreszBar]

©/Form [NewTabbedPane] i [=]

Tahled

|_minimumSize [I140, 4m =]
Synthetic Properties
Expert | Layouf | Ewerts |

The above figure shows a Form Editor window over the Component Inspector window. A JPanel has
been added to the JFrame, a JTabbedPane has been added to the JPanel, and three components have

111

Chapter 5: Developing Visua Classes

been added to the JTabbedPane.

By default, each tab is named for its own component. However, we have renamed the tables tab and
also added a tool tip that appears when the user holds the mouse over the tab. Notice that each
component in the JTabbedPane has its own layout settings; this is where the tab parameters (Tab

I con, Tab Nane, Tab Tool Ti p) are set.

Note: Be careful where you click when adding new components to a JTabbedPane. If you click on
an existing tabbed component, your new component might be added to the existing
component rather than to its own new tab.

JTable, JList

A JTable is a grid of cells, each cell having its own content. A JList is similar but with just one
dimension. The special support for JTable and JList consists of a custom property editor that
controls the number of rows (and columns), the titles, object types, etc.

To open the custom property editor for a JTable or JList:
1 Access the object's properties (e.g. through the Component Inspector).

2 Choose the Properties tab.

3 Click on the ... button for the entry for the nodel property.
The JTable custom property editor has tabs for Table Settings and Default Values.
The JList custom property editor allows you to add, delete, and rearrange list items.

Note: These custom editors only provide the ability to edit simple models of relatively fixed
structure. More demanding applications cannot use these visual editors. For live data with
changing structure, create your own model in code and assign it to the table or list in the
form’s constructor.

MDI Applications: Using JDesktopPane and JinternalFrames

Swing makes MDI (Multiple Document Interface — windows within windows) easy to implement.
The model is like traditional computer windowing systems. In a windowing system, you have a
desktop with windows on it. With the Swing MDI, you use a JDesktopPane with JInternalFrames on
it. The user can position the JInternalFrames like windows on a traditional desktop as well as resize,
close, and minimize them. Forte for Java Community Edition 1.0 lets you lay out and define all of this
interactively.

You typically start with a JFrame and then add a JDesktopPane to it. To add JInternalFrames, select
them from the Swing2 tab of the Component Palette and click on the JDesktopPane. This adds
internal frames with fixed structure. Alternatively, you can create separate forms for the types of
frames you want, and then (construct and) add these in code to the desktop pane, thus giving you

112

Chapter 5: Developing Visua Classes

more flexibility.

You can add other components to the JDesktopPane such as a JTable or JSlider. However, these have
their standard properties, and users can't manipulate them in the same way they can manipulate a
JInternalFrame containing those components.

JSplitPane

A JSplitPane has two sides, each of which may have a component placed in it. A user can move the
divider between the sides to make one side bigger and the other smaller. As with other special
components of this type, Forte for Java allows you to manipulate it during design — for instance, to
drag the divider. You can change the orientation of the divider from vertical to horizontal with the
Ori ent ati on property (under the Properties tab of the property sheet). You may find that it's
easiest to select the JSplitPane itself by clicking on its entry in the Component Inspector.

Adding JavaBeans to the IDE

JavaBeansO Components is Sun's component model for Java and has been widely adopted by Java
developers. Forte for Java automates the use and creation of individual JavaBeans (beans). It also
enables the customization of beans, serialization of the customized state, and the use of the bean with
specific settings. Both visual and non-visual JavaBeans can be easily added to the Component Palette
and later used in visual design.

JavaBeans are distributed along with their manifests in JAR files. The IDE includes several installed
JavaBeans, and offers the possibility of adding many more. Installing new JavaBeans is an easy way to
expand the functionality of the IDE.

Standard method for adding JavaBeans

To add a JavaBean to the IDE:
1 Choose Tools | Install New JavaBean from the main menu.
2 In the dialog box, select the path and JAR file of your new JavaBean and click Open.
3 Alist will appear with available JavaBeans. Select the ones you want and click Install.
Note:If the beans you expect do not appear, the required attribute, Java- Bean: True is

missing from the beans’ entries in the JAR manifest. Please see the JavaBeans specification for
details on proper packaging of JavaBeans.

4 In the Palette Category dialog that appears next, choose where in the Component Palette (under
which tab) you would like to place the bean(s) and click OK.

113

Chapter 5: Developing Visua Classes

You will then see the new bean(s) appear under the tab you indicated, ready to use in an
application.

Some JavaBeans have their own icon. In cases where this is not true, the IDE assigns a default
icon to the JavaBean. To see the name of each installed JavaBean, position the cursor over the
bean and a tool tip will appear.

Alternate method for adding JavaBeans

You can also add beans from a JAR archive or from a local directory.

To add a bean from a JAR archive:

1 Either

. select Tools | Add JAR from the main menu; or
. right-click on Reposi t ory in the Explorer and choose Add JAR from the context menu; or

. right-click on Proj ect Settings / Repository Settings and select New | Jar
Archive.

2 Sclect the path and directory, click on the . j ar file, and click Mount.

The archive then appears in the Explorer, under the Repository, and in the Object Browser.

3 If you are using the Explorer, expand the node of the archive or directory that you have just
added and locate the JavaBean you want to add.

4 Right-click on the JavaBean in the Explorer or Object Browser and choose Tools | Add to
Component Palette from the popup menu.

5 In the Palette Category dialog, select the tab under which you would like the bean to appear in the
Component Palette and click OK.

The new JavaBean will appear in the Explorer and on the Component Palette in the Main
Window under the category you assigned.

To add a bean not packaged in a JAR or ZIP file:

a Follow the previous procedure, but use Add Directory instead of Add JAR in step 1.

To add a bean to the IDE from the Repository:
a Follow steps 4 and 5 of the procedure for adding JavaBeans to the IDE.

Note: Using the Alternate Method you can also add JavaBeans that come as serialized prototypes
(their filenames end with . ser).

Instead of using Tools | Add to Component Palette, you can copy and paste (using the Edit menu in the

Main Window, context menus in the Explorer or Object Browser, or keyboard shortcuts) beans into
the G obal Settings / Conponent Pal ette.If youcopy and paste using the main menu or

114

Chapter 5: Developing Visua Classes

a context menu, you can choose from up to four options from the Paste submenu. For more on these
options, see “Package Popup Menu Commands” on page 138.

Automatic method

You can have a JAR file installed automatically each time the IDE is started by putting it into the
beans directory under the root of the installation. By default, each bean is put into a Palette category
with the same name as the JAR file.

You can control which beans are loaded and what Component Palette categories they are loaded into
by adding a beans. properti es file.

115

Chapter 6

Using the IDE

This chapter describes each part of the Forte for Java Community Edition 1.0 IDE in detail and tells
you how you can customize it to your own specifications.

User interface

Just as Java is an object-oriented programming language, the Forte for Java Community Edition 1.0
user interface is a/so object oriented, providing multiple ways to accomplish most tasks.

The core of the user interface consists of the Main Window, Explorer, and Editor. The Form Editor
window, HTML browser, Component Inspector, Object Browser, Debugger, Execution View, and
Output Window are all parts that work closely with the core IDE. This default set of windows,
workspaces and tools can be adjusted freely to match your preferences.

Look and Feel

The Forte for Java user interface offers different “looks” based on the platform being used. By
default, the IDE launches in the Windows look and feel when running on a Windows platform and

Chapter 6: Using the IDE

the Metal look and feel on all other platforms. It can then be adjusted to meet the developet's
preferences.
To change a look and feel:

a Go to View | Look&Feel on the main menu and select the look and feel you want from the
submenu.

Main Window

The Main Window opens when Forte for Java is launched and remains open as long as Forte for Java
is running. The Main Window can be viewed as the control center of the IDE. Most important
operations and commands are accessible from this window. The Main Window can be broken into
four separate groups of controls: the menus, the toolbars, the workspace tabs, and the status line.

Main Window with Metal look and feel

B Forte for Java - Community Edition - Beta Yersion (Build 429)
File Edlit g Project Build Debug Tools Windou Help

EEEEEEEEDREE
[EECDERNERRCRE

Editing | Browsing | Rurning | Debugging [CPEning Help

EEONE

@ W Swring2 rﬁhaynms rElnrders|
[2] [Al[=d [=] =]] 28 (e [+ (] [O) [S][E] (8]

Menus and toolbars

A listing of all menu items and toolbar operations is given in “Main Window Menus” on page 172,
and specific operations are mentioned in pertinent sections. Menu items and toolbar tools are context
sensitive: they may be disabled (grayed out), depending on which window is currently active or which
object is selected. Menu entries and toolbars can be re-ordered and customized. Keyboard shortcuts
are shown in their corresponding menu items. See “Customizing menus and toolbars” on page 151
for more information.

Component Palette

The Component Palette (shown in the right half of the figure “Main Window with Metal look and
feel” on page 117) is a special toolbar used in conjunction with the Form Editor to visually build
forms. It consists of several tabs, each housing standard components and layouts.

Workspaces

Forte for Java uses the concept of workspaces to manage windows and tools. On the lower left
corner of the Main Window are four workspace tabs: Editing, Browsing (unless the Object Browser is
not installed), Running, and Debugging (unless there is no Debugger installed). Each workspace
contains a set of opened windows appropriate to specific stages of the development cycle. Clicking

117

Chapter 6: Using the IDE

on each of these tabs “flips” between each workspace. By default, the IDE automatically switches to
the Running Workspace when you execute an application and to the Debugging Workspace when you
initiate a debugging session. For more information on managing workspaces, see “Workspaces” on
page 130.

The Explorer

The Forte for Java Community Edition 1.0 Explorer gives a unified view of all objects and files and

provides a starting point for many programming functions. Here, you can work with objects, organize
your work, modify object properties, connect various data sources, and customize the Forte for Java
environment.

The Explorer with Metal look and feel

@ Explorer [MemoryVYiew] =] E3

B8 || |

g Fepositary =

'? = Roat of DownzippedBuildd 29 _EntryDevelopment
@ 4§ examples

@ 4 advanced
@ hemaryiew
2= B clazs hMelbryiew
&= ﬁ MemoryWiew [JFrame]
O MemoryWiewlLocale
= | textedior

@ 4 tutarial -
—‘ g Repository J:ﬂ Javadoc E Funtime

2 Project Settings | T Global Settings

Navigation

When you first start Forte for Java and open the Explorer, you will see a multi-tab window with tabs
labeled Reposi t ory, Runt i me, Javadoc, Proj ect Settings,andd obal Settings. Click
on a tab to go to that part of the Explorer.

Navigating the hierarchy within each category is simple. Click on the expand button (& for Metal,
ﬂ for CDE Motif, and [# for Windows) next to each item to expand the tree. Each tree node
represents an object, and the object types are visually distinguished with icons. See “Object Types” on

118

Chapter 6: Using the IDE

page 139 for an overview of available object types.
Right-click on any item to access its popup menu, which contains the context-sensitive set of

operations (as well as access to the property sheet) available for that item.

Explorer toolbar

The Explorer toolbar presents icons for standard clipboard operations: Cut, Copy and Paste. It also
includes a Delete icon and the Toggle Property Sheet toggle button. To see the name for each icon,
hold your mouse cursor over it and a tool tip label will appear. As with the popup menu, the toolbar
icons are context sensitive. For example, when a top-level node such as Reposi t ory is selected, the
cut and delete functions are not available as the Reposi t or y cannot be deleted or moved.

& Explorer [MemoryYiew] M =] E3
BROILE

Almost all objects in the Explorer hierarchy have some associated properties. The Toggle Property
Sheet toggle icon in the Explorer toolbar can be selected to open the Property Sheet pane which
displays the properties associated with each object. These property sheets can also be accessed via the
Properties command on each object's popup menu.

Default operations

In the Explorer window, double-clicking on an item or selecting the item and pressing the ENTER
key performs the default operation on that object: opening it, opening its property sheet, and/or
expanding it.

The default operation varies for each object type. The most common operation is displaying the
object, which means opening the selected object in an Editor window. For example, double-clicking
on a Java object opens the source in the Editor. Double-clicking on a method or variable of a Java
class, as displayed under a parent, opens the Editor window and positions the cursor on the line
where that method or variable is declared. Double-clicking on a folder object, such as a top-level
node, simply expands or collapses the sub-tree. Double-clicking on a Project Settings node opens a
Property Sheet window for that item.

Property sheet

The property sheet displays (and, in the case of writable properties, allows you to edit) the properties
of the items selected in the Explorer, whether they are files, components in the Form Editor, or the
IDE's system objects. When multiple items are selected, the property sheet displays the properties

119

Chapter 6: Using the IDE

that are common to all the selected items. If the items have multiple sets of properties, each set of
properties is displayed on a separate tab.

Accessing the property sheet

There are several ways to access an object’s property sheet.

To view the object’s properties on the Property Sheet pane in the Explorer:

a Select the object in the Explorer hierarchy and then click the Toggle Property Sheet icon (as shown
in the figure below).

To view an object’s properties in the Property Sheet pane of the Component Inspector:

a Select the object in the Component Inspector.

To view the object’s property sheet in its own window:

a Right-click on the object in the Explorer or Object Browser and select Properties from the popup
menu; or

a Select the object and press ALT+1.

Contents of the property sheet

The Property Sheet pane consists of paired names and values. Each row of the property sheet
represents a single property of one or more (if multiple objects ate selected) items. A name/value pair
may be disabled (grayed) if it represents a read-only property that is not connected with a custom
property editor (a dialog tailored to the specific property allowing editing or input of more complex
values).

Each property name has a tool tip label which gives a brief description of the property. To access the
tool tip, rest the mouse over the property name for a moment until the tool tip appears.

120

Chapter 6: Using the IDE

Explorer with its Property Sheet pane

& Explorer [MemoryView] =] B3

5/E]s] [

g Fepositary
9 (=3 Root of Iwnzipped Buildd29_EntryDevelopment
Q@ Y examples
@ 4 advanced
Q@ Mmooty e
= B clazs Memaryiew
Loy E Memary™iew [JFrame]
E= W) Memoryiewlocale
= | textedtor

@ 9 tutorial =

—‘ gRest'rtDr'-,-' L ka.]avaduc L :T}.'Rurltime |

@' Project Setting= Lﬂ‘ Global Settings: | —LPererties LExecutiu:un |

285%™ |

Mame Memory e

Synchronization Mode ([Confirm all changes

Templste Falze

For JavaBeans properties, the name of the property is derived from the display name of the bean
property. The tool tip for each property name displays its accessibility information and a short
description for that property. Accessibility details are shown in parentheses (r / w,r/ -, -/ wor No
property editor)and depend on the property and its property editor (see Custom property
editors below).

The value field either shows a property value as text or paints a representation of it (like the color
preview for a color property). The tool tip for the value of the property displays the type of property,
such as j ava. awt . Col or . Clicking on this area switches the value field into input mode, allowing
the value of the property to be changed. Double-clicking a name toggles the value if there are just two
possibilities (for instance, changing Tr ue to Fal se)—or, if multiple values are possible, the value
advances to the next possible (for instance, bl ack might change to bl ue, then tor ed and so on for
each double-click). There are several ways to change the value, depending on the type of property.
You may edit the value as text, select from a pull-down list, open a custom property editor (from the
... button), or customize a painted preview directly in the painted area.

Property sheet toolbar

The first three icons on the property sheet toolbar are toggles for sorting (to leave unsorted, sort by
name, and sort by type, respectively). The next toolbar button enables filtering of properties by
accessibility (read/write) so that only writable propetties are displayed. The right-most toolbar icon

invokes the Customizer. The Customizer is a dialog which can be used for advanced customization of
the whole object at once. This icon is context sensitive and is only available for certain objects.

Custom property editors

A custom property editor is a dialog, invoked by pressing the ... button on a property value in a

121

Chapter 6: Using the IDE
property sheet, specially designed for editing the value of that property. Custom property editors
range from the simple (e.g. editors for strings) to complex (e.g. for setting colors in the Editor).

All changes made in custom property editors are applied throughout the environment immediately —
for example, changing the background color of the Editor window changes not only any new Editor
windows you open but also any that are currently open.

The Property Editor dialog box contains three buttons:
* The OK button closes the dialog and is shown only if the property is writable.
e The Cancel button reverts to the setting before the property editor was invoked.

e For properties that have default values, the Default button sets the property to its default value.

Editor

The Editor is a full-featured text editor that is integrated with the Form Editor, Explorer, Compiler,
and Debugger. It is the default viewer for all Java, HTML, and plain text files as well as other types of
files specified by modules (such as XML when the XML module is installed). Each of these open files
is displayed in a multi-tab window — a single window with multiple tabs. Advanced features include
customizable abbreviations and dynamic Java code completion. See “Editing Java sources” on

page 41 for a description of how the Editor is integrated with other parts of the IDE.

122

Chapter 6: Using the IDE

The Editor window with Metal look and feel

Fi Editor [ColorPicker *] =] E3
— T OI T T [DLW L IOC =
a9 =
ag
L getContentPane ().add (jPanell, "HNorth™):

o

o3 1

94

95 private wvoid blueSliderStateChanged [javax.swing.ewent.ChangeEvent evt) {
95 colorPreviewl.setBlue (blueilider.get¥Walue ()):

a:1 1

95

S private wvoid greenSliderStateChanged ijava:-c.swing.event.ChangeEEent evt)

100 colorPreviewl.setbreen (greenilider.getValue ());

101 1

102

103 private woid redsliderStateChanged (javax.swing.event.ChangeEvent evt] [|22

104 colorPreviewl.setRed (redilider.getWalue ()); 1

105 1

log

107 FEE BEuit the Application 7 =]

| »]

| 99:39 |INg |

ColorPreviesn' | CaolorPicker *

Opening the Editor and navigating from tab to tab

Double-click a Java or text object in the Explorer to open the Editor. Any files that you subsequently
open will also appear in the Editor with their own separate tabs in the bottom of the window. To flip
between displayed files, simply click the tab of the file you want displayed. The tab of the currently
visible file is highlighted. By right-clicking on a tab, you can bring up a context menu that gives you
options to dock the tab to another window or clone the window. For more information, see
“Multi-tab windows” on page 132.

A modified file the Editor window is marked with an asterisk (*) after its name on its tab. (The
asterisk also appears after the file name in the window title.) If there are any unsaved modifications
when the Editor is closed, a prompt will appear to save or discard changes, or cancel the operation.

Mouse and clipboard functions

The Editor uses standard mouse functions: click and drag the left mouse button to select a block of
text, double-click the left button within a word to select that word, and triple-click to select an entire
line. You can also select a block of text by clicking to place the caret where the block should begin,
holding down SHIFT, and then clicking to determine the end of the selection.

123

Chapter 6: Using the IDE

You can select text and move it to and from the clipboard using the Cut, Copy, Paste, and Delete
commands, which are available in the Edit menu, on the Edit toolbar, and in the popup menu (accessed
by right-clicking on the selected text). You can use Undo to reverse the previous command and Redo
to reverse the reversal. These commands are available in the Edit menu, on the Edit toolbar, in various
context menus, and by using keyboard shortcuts (see below).

Editor keyboard shortcuts

A wide range of keyboard shortcuts are available in Forte for Java to speed the editing process,
including:

* CTRL+c (or CTRL+INSERT) to copy

¢ CTRL+x (or SHIFT+DELETE) to cut

* CTRL+v (or SHIFT+INSERT) to paste

* CTRL+z to undo a command

* CTRL+y to re-do any command that has been undone

* CTRL+F3 - find word or selection marked by the caret

* CTRL+t —increase line or block indentation

* CTRL+d — decrease line or block indentation

. CTRL+b — go to the matching parenthesis, bracket, or brace
¢ CTRL+w — delete previous word

* CTRL+F2 - toggle bookmark (to bookmark a line — or remove a bookmark — in the Editor

window)
* T2 —jump to the next bookmark in the document

For a complete list of shortcuts installed with Forte for Java, see “Editor Shortcut Keys” on page 162.

Word match

You may also may extend a series of letters to match with other text in the same document with the
same prefix. After typing in a series of letters, press CTRL+k to find the previous instance of any
word containing that prefix or CTRL+] to find any ensuing references. You may do this repeatedly to
find multiple matches in the document. The IDE searches for a match not only in the current file, but
also in all other opened files (in the order that they were last used).

124

Chapter 6: Using the IDE

Customizing Editor keyboard shortcuts

If the key combinations for the shortcuts do not suit you, you can change them.

To change the Editor’s keyboard shortcut assignments:
1 Go to the Edi t or Setti ngs node under the Property Settings tab in the Explorer.

2 Sclect the G obal Key Bi ndi ngs property and click on the ... button. This will bring up the
Key Bindings custom property editor.

3 In the custom property editor, edit the Action and Key fields to reassign the shortcut keys.

Note:You cannot set a keyboard shortcut for anything that is not in the Action list in the
custom property editor.

Editor abbreviations

To simplify editing of Java sources, a set of customizable abbreviations is built into the Editor, which
can be used to expand a few pre-defined characters into a full word or a phrase. Defining
abbreviations is useful for long and frequently-used Java keywords. For example, if you type pu and
press SPACE, the text will be expanded to publ i ¢. To enter characters without expansion, type
SHIFT+SPACE - this enters a space without checking for abbreviations.

To change the Abbreviation table:

1 GotoProperty Settings / Editor Settings / Java Editor inthe Explorer and
display its property sheet.

2 Sclect the Abbr evi at i ons property and click on the ... button. This will bring up a custom
property editor for abbreviations.

3 Select the abbreviation that you want to change in the list box and click Edit.

4 Another dialog will appear with a combo-box list for the abbreviations (Action) with the selected
one showing and a field showing the selected expansion (Key). Change either or both values and
click OK to make the changes or Cancel to go back to the Abbreviations dialog.

To add abbreviations:

a Follow the same steps as for changing abbreviations, but click Add in the Abbreviations dialog
instead of Edit.

Find and replace
To find or replace text in a file open in the Editor window, press CTRL+f to invoke the Find dialog,
ot press CTRL+r to invoke the Replace dialog. The Find/Replace dialog gives you checkboxes which

allow you to choose any combination of the following options:

. Highlight Search — to highlight all occurrences of the search text in the file

125

Chapter 6: Using the IDE

¢ Incremental Search — for the search engine to try to find the text as you type (without having
to press the Find button)

. Match Case — to limit the search to text that has the same capitalization

. Smart Case — to limit the search to text that has the same capitalization when at least one
character of the search text is upper case

* Match Whole Words Only — to match the search text only to whole words in the file
e Backward Search — to search in reverse order in the file

e Wrap Search — to continue the search at the beginning (or end) of the file

Java code completion

Forte for Java Community Edition 1.0 also has a dynamic code completion feature, where you can
type a few characters and then bring up a list of possible classes, methods, variables, etc. that can be
used to complete the expression.

To use Java code completion:

1 Type the first few characters of the expression (e.g. i nport javax. orsoneFi | e. get P).

2 Press CTRL+SPACE (or pause after entering a period). The code completion box will then
appear.

3 Then use the most convenient combination of the following steps:
a. keep typing to narrow down the selection of items in the list.

b. use the navigation keys (UP arrow, DOWN arrow, PAGE-UP, PAGE-DOWN, HOME, and
END) or the mouse to scroll through the list and select an expression

c. press ENTER to enter the selected method into your file and close the code completion box
d. press TAB to select the longest common substring matching the text you have typed

(Bash-style context-sensitive completion) and keep the list box open

If you press ENTER for a method with parameters, replaceable text is given for the first parameter
which you can then fill in. If the method takes multiple parameters, you can bring the list box back by
typing a comma after you fill in the parameter.

Changing the key bindings for code completion

Just as you can with other Editor shortcuts, you can change the shortcut assignments for Java code
completion.

To change the keyboard shortcut assignments for code completion:

1 Selectthe Editor Settings / Java Editor node under the Property Settings tab in the

126

Chapter 6: Using the IDE

Explorer.

2 On its property sheet, select the Key Bi ndi ngs property and click on the ... button. This will
bring up the Key Bindings custom property editor.

3 In the custom property editor, edit the Action and Key fields to reassign the shortcut keys.

Adding your own classes to the code completion database

You can update the code completion database so that your own classes are among the choices offered
when using the database.

To update the code completion database:

a In the Explorer or Object Browser, right-click the package containing the classes you want to add
to the database and select Tools | Update Parser Database... from the context menu.

Form Editor

The Form Editor allows you to design applications visually. You can select items such as panels, scroll
bars, menus, and buttons in the Component Palette and then place them directly on the Form Editor
window. As you do, Forte for Java automatically generates the Java code to implement the design and
behavior of the application. (The code is visible in the Editor window.) The Form Editor also uses
your chosen Java layout manager, which controls the appearance of the components in a window, to
control the layout in the Form Editor. If you choose a different layout manager or change its
parameters, the Form Editor displays your changes immediately. For a comprehensive guide to using
the Form Editor, see “Designing visually with the Form Editor” on page 84.

Debugger Window

The Debugger Window monitors breakpoints, watches and threads during a debugging session.
Breakpoints provide the ability to break (pause) at certain points within the code during execution
and examine the current state of the system. Watches can be used to monitor the values of variables
used in the code during execution. You can also monitor all threads during execution, with access to a
thread's call stack and local variables throughout the whole call stack.

Breakpoints, watches and threads are all presented on separate tabs in the Debugger window, along
with a property sheet. In fact, this window is a view of the Debugger hierarchy presented in the

Explorer, under Runti me / Debugger.

See “Debugging Java classes” on page 49 for a guide to using the Debugger.

127

Chapter 6: Using the IDE

Execution View

The Execution View provides a view of all applications currently being executed within the IDE.
This window is actually a view of the Explorer hierarchy under Runti me / Processes.

By default, the Execution View is opened on the Running Workspace. When no applications are
running, it simply displays <No Pr ocesses Runni ng>. When an application or applet is running,
it is listed by name. Each currently running process is listed. As for many objects in the IDE, a
displayed process has a popup menu. In this window, the menu contains just one item: Terminate
Process. This allows you to force termination of the selected process.

Output Window

The Output Window is a multi-tab window displaying output from any component that produces
output — such as the compiler or executed application or applet. Output from each component is
presented on a separate tab: the Compiler tab, Debugger tab, and a tab for each executed process
labeled with the name of the application being run.

By default, the Output Window is visible on the Running Workspace and is automatically displayed
when you compile (Editing Workspace), execute (Running Workspace), or debug (Debugging
Workspace) an application.

The Compiler tab is visible after compiling a Java source and displays compilation output and standard
error. The output is color coded: errors are marked red, other text is blue. Double-clicking an error
line on this tab brings forward the Editor window displaying the source, highlights the incorrect line
in red, and positions the caret at the exact location of the compilation error.

The Debugger tab is split vertically into two panes. The left pane displays the output of the
application being debugged. The right pane displays useful debugging information such as details of
the application's threads, thread groups and breakpoints as well as status messages from the debugger
itself.

Any application currently being executed also has a separate tab in the Output Window. Its tab
displays the standard output of the application. The standard input of the application (assuming the
application tries to read anything) is also redirected here — more specifically, to the text field at the
bottom of the window.

There are two properties which govern the use and re-use of application tabs: Reuse Qut put

W ndow Tab and Cl ear Qut put W ndow Tab. These properties can be found on the property
sheet of Property Settings / Execution Settings in the Explorer. If the Reuse

Qut put W ndow Tab property is set to Tr ue, each individual application uses only a single output
tab — that is, successive executions do not create new tabs. If the Cl ear Qut put W ndow Tab
property is set to Tr ue, the tab is cleared before reuse. Cl ear Qut put W ndow Tab is useful only
if Reuse Qutput W ndow Tab is set to Tr ue.

128

Chapter 6: Using the IDE

Context menus which provide window management options are available on the tabs — see “Window
management” on page 130. You can also right-click in the body of the pane for the options Copy to
Clipboard and Clear Output.

An application's output tab also provides a right-click popup menu, with the options Terminate
Process and Close Output Window Tab.

Web Browser

Forte for Java Community Edition 1.0 includes the ICE Browser from ICEsoft, a built-in
full-featured Web browser that is useful in both testing and providing easy access to online help
sources. It enables standard browsing capabilities from within the IDE and is useful in reaching
online help sources.

To open the Web Browser, do one of the following:

a Select Web Browser under the View menu on the Main Window.
a Press ALT+7, the default shortcut.

a Select a bookmark from Help | Bookmarks in the main menu.

a Open an HTML file or bookmark in the Repository.

Once the browser is open, it operates like any simple browser. To load a different page, type the URL
in the Location field and press ENTER. The forward and back arrows cycle through previously-seen
pages, the Stop icon stops the loading process, and the Home setting is set (by default) to the
NetBeans website, http://www.netbeans.com/. Clicking the History icon gives you a list of all URLSs
you have loaded in the session and allows you to double-click on any of them to bring that web page
back.

To open an additional Web Browser window:

1 Select Window | Clone View from the main menu to open a new browser window.

Another Web Browser window will open with the same Web page.
2 Type a new URL in the Location field and press ENTER to load a different Web page.

Note: You cannot open multiple Web Browser windows by other means. Selecting Web Browser or
pressing ALT+7 causes the current window to revert to the default home page).

You may also want to set a different home page (the page that displays when you open the Web
Browser or press the Home icon).

To set a different home page:
1 GotoProject Settings / System Settings in the Explorer.

2 Display the property sheet by selecting the Toggle Property Sheeticon or right-clicking on Syst em

129

Chapter 6: Using the IDE

Set t i ngs and selecting Properties from the context menu.

3 Enter the new home page under the Home Page property and press ENTER.

Window management

Forte for Java has the following features which, when combined, give you a great deal of flexibility in
managing windows on your desktop:

. Workspaces, meaning window sets, each geared toward a given task (e.g. editing, browsing,
running, or debugging) and which can be opened and closed as a group.

* Multi-tab windows, which hold multiple open files at once and allow you to flip between files
by clicking on a tab.

¢ Docking of windows, which allows you to change the windows in which the files are displayed
(for example, you can move a source file from a multi-tab Editor window to its own window or
to a different already existing container window, such as the Output Window).

¢ Cloning of windows, which allows you to have the same file open in two different windows,
making it easier to work on two different parts of the file at the same time.

Workspaces

As you progress through the development cycle (write, compile, debug, execute, edit, etc.) when
working on any significant project, the screen can become cluttered with windows. While all of these
windows are necessary for development, they are generally not all needed simultaneously.

Forte for Java workspaces enable you to efficiently manage a large number of windows and to group
these windows into useful, logical sets. You can flip between workspaces by simply clicking the
different workspace tabs on the Main Window.

Editing I Broveesing | Funning | Debugging I

Standard workspaces

The default workspace configuration is a standard and logical grouping of the most commonly used
windows:

¢ Editing — Explorer; if any files are open, the Component Inspector, Form Editor window, and
Editor window; after compilation of files, Output Window

130

Chapter 6: Using the IDE

¢ Browsing — Object Browser and Property Sheet window, and then the Editor window if any
files are opened

. Running — Execution View, Output Window
* Debugging — Debugger Window, Output Window, and Editor (if any files are open)

Note: By default, the IDE automatically switches to the Running Workspace when you execute a
program and to the Debugging Workspace when you start a debugging session.

Using workspaces

Being in a given workspace does not constrain what windows you can have open. You can open (e.g.
from the View menu) or close any window without having to change the workspace. Whenever you
open or close a window, the workspace reflects that change.

Upon exiting the IDE, the current state of each workspace is saved. This information includes open
windows and their sizes and positions. When you next launch Forte for Java Community Edition 1.0,
your workspaces will appear exactly as you left them.

Any given window can be open on any workspace—and can be open on more than one workspace
simultaneously.

For example, to view the Editor window on both the Editing and Running workspaces:

1 Open the Editor window on the Editing Workspace.

2 Double-click on a Java object displayed in the Explorer.

The Editor window will open with that source.

3 Flip to the Running Workspace by clicking on the Running tab in the Main Window.
The first Editor window will no longer be visible, and you will see either the default set of
Running Workspace windows or those you left open when last using this workspace.

4 Sclect the Window menu on the Main Window.
You will see a list of currently open windows, including Editor[] (with the name of the open
source file in the brackets).

5 Select this item to open the Editor window on the current workspace — in this case, the Running
Workspace.
The Editor will then be visible on both the Editing and Running workspaces.

For some types of windows, it is also possible to open separate instances of the same window, which
act independently of each other. For example, if you have an Explorer window open on your Editing
Workspace, you can open an entirely separate Explorer on the Debugging workspace by flipping to

the Debugging Workspace and clicking the Open Explorer icon on the Main Window. This Explorer is

131

Chapter 6: Using the IDE

a new window and does not display changes (concerning window size, nodes selected and expanded,
etc.) made to an Explorer window on another workspace.

Workspaces are completely customizable: you may add, delete and rename the available workspaces.
See “Customizing workspaces” on page 156 for further details.

Multi-tab windows

A multi-tab window presents multiple files as separate tabs in a single frame, enabling you to quickly
and easily flip between these files, either by clicking on the tabs or by using the ALT+LEFT and
ALTH+RIGHT keyboard shortcuts.

Each tab has a popup menu of commands (Save, Clone View, Close, and Dock Into...), accessible by
right-clicking on the tab itself. See below for more information on cloning, docking, and undocking
windows.

Note: Multi-tab windows with only one file or component look like single windows — i.e. they don’t
have a tab. Thus commands that appear on context menus for tabs must be accessed
elsewhere (such as from the Main Window) when in a single window. Once a second file is
opened in or docked to the window, tabs for both items appear.

Undocking and docking windows

While the multi-tab window enables quick and efficient access to more than one file or view, only one
of those files is visible at any one time. At times it is useful to look at different files or views
simultaneously, side by side. Forte for Java makes this possible with its docking feature, which allows
you to dock (move objects into multi-tab windows) and undock (move object views to single-view
windows).

Undocking

Any object open in a multi-tab window (with at least two objects open) can be undocked and
presented in its own stand-alone, independent window. In this way you can simultaneously view
separate sources, side by side. Undocked windows may also be docked back to the “parent” multi-tab
window (See Docking below.)

To undock the active tab of the active window:

a Select Undock Window from either

. the Window menu on the Main Window; or
e the tab’s context menu (available by right-clicking on the tab);

a Or Select Dock into...| Single Frame from either

132

Chapter 6: Using the IDE
. the Window menu on the Main Window; or
e the tab’s context menu (available by right-clicking on the tab).

The active object will be removed from its original window and will appear in a new window. This
new window may be repositioned, resized, moved to another workspace, and even closed — all
independently of the parent window. You can position the windows side-by-side to view sections of
source simultaneously or copy and paste code between windows.

Docking

Docking windows allows you to reduce clutter on your desktop without having to close any objects
and to view objects in a window that is more convenient for you.

You can dock any window tab into any named container window such as:
¢ the Output Window

¢ the Debugger Window

e the Editor window

or

e other windows such as the Debugger Window, Object Browser, and Form Editor window when
they are already open

or
. a new unnamed multi-tab window

Almost any window can be docked into one of the windows above. This includes any Editor tab, the
Component Inspector, the whole Explorer window, the Property Sheet, the Object Browser, the Web
Browser, the Execution View, the Debugger tabs, and the Output Window. Frames from multi-tab
windows can also be docked into new unnamed single-view frames.

To dock an undocked window into a different window:
1 Click on the window to be docked to activate it.

2 Select Dock Into... from the Window menu on the Main Window and then one of the windows
given in the submenu.

The undocked window will close, and the object will open as a new tab in a multi-tab window.

To dock a tab in a multi-window into a different window:

1 Select Dock Into... from either

* the Window menu on the Main Window (making sure that the undocked window is the active

133

Chapter 6: Using the IDE

window); or
e the tab’s context menu (available by right-clicking on the tab).
2 Select one of the window choices in the Dock Into... submenu.
Note: Separate Explorer tabs cannot be docked to other windows, but the whole Explorer can. If
you dock the Explorer into a multi-tab window, there will be two sets of tabs at the bottom of

the window when the Explorer is active in that window (the top set is for the main Explorer
nodes and the bottom set is for the Explorer as a whole and the other objects in the window).

Cloning windows

It is often useful to view separate sections of the same file simultaneously. Forte for Java has a clone
function to accomplish this. You can clone the view of any Editor file or the Web Browser.

To clone a window:
1 Make sure the file to be viewed in the cloned window is on the active tab.
2 Select Clone View from either
. the Window menu of the Main Window; or
. the tab's popup menu.
A new tab will open in the same multi-tab window, displaying the same content.

3 Undock this new view of the file or dock it into a different window:.

For more information on docking, see “Undocking and docking windows” on page 132.

Modules in Forte for Java

Forte for Java’s modular architecture means that all parts — even those central to the functionality of
the IDE, like the Editor, Debugger, and Form Editor — are in module form. There are also base

modules for things such as the HT'TP server, the Web Browser, and creation of JavaBeans. Modules
are also available for advanced features such as Database Explorer, Servlets/JSP, RMI, CORBA, etc.

In addition, you can create your own modules or add third-party modules.

Managing modules

All modules installed in the IDE have their own node in the Explorer under G obal Setti ngs /
Modul es. Their property sheets contain the Enabl ed property which you can use to activate or
deactivate the module. The other five properties (including two on the Expert tab) are read-only and

134

Chapter 6: Using the IDE

give basic information about the module.

Adding modules

Modules can be easily added and updated with the Auto Update feature.

To update or add a module to the IDE using Auto Update:

a Select Help | Update Center... from the main menu.
The IDE will access the NetBeans website (and partner websites) where the latest versions of all
modules are available and determine which modules are missing or not current in your IDE. It
then presents you with a list of these modules and allows you to select the ones you would like to

download. After you have made your selection, the modules are downloaded and installed into
the IDE.

You can also add modules manually by right-clicking on the Modul es node and selecting New Module
from File. The Open dialog will appear allowing you to browse for the JAR file containing the module.
If you select a valid module and click OK, the module will be installed into the IDE.

Uninstalling modules

To uninstall a module:

1 Under the Global Settings tab in the Explorer, expand the Modul es node and select the module
you want to delete.

2 On the property sheet, select the Enabl e property and set it to Fal se.

The next time you start Forte for Java Community Edition 1.0, the JAR file for that module will not
be loaded into the IDE.

Should you wish to later reinstall the module, you can repeat the same procedure, but switch the
Enabl e property to Tr ue.

Exploring objects

The Explorer is not only a place where you can manage files, but also a place where you can create
objects and manage their properties as well as control IDE settings. Virtually anything that can be
done in Forte for Java can be done through the Explorer using:

* the context menu (available for each node by right-clicking on the node)

135

Chapter 6: Using the IDE

. the property sheet (accessible from the context menu or by pressing the Toggle Property Sheet
icon in the Explorer’s toolbar)

There are four top-level folders in the Exploret's hierarchy:

. Reposi t ory — contains work objects.

* Runti nme — contains a list of currently running processes and debugger information.

. Proj ect Settings — holds all settings (such as Repository, compilation, execution,
debugging, and workspace settings) specific to a Forte for Java project. If you install the Projects
module, it is possible to have multiple projects and thus multiple sets of Project Settings.

. G obal Settings —holds all general IDE settings for menus, toolbars, modules, etc.

Repository

The Repository is the most important segment of the IDE’s Explorer. It holds all files that the IDE
uses and all files you create. The Repository gives a unified view of files of all different types. You can
access objects from different sources by mounting different file systems and JAR and ZIP archives in
the Repository.

File systems and the class path

The concept of file systems is critical to the architecture of the IDE.

A file system represents a hierarchy of files and folders. File systems can represent plain local files (or
the network drive, depending on the operating system) or ZIP or JAR archives. Once mounted, the
file system transparently hides any differences between these sources.

Some default items are added to the Repository when the IDE is launched. User file systems can be
viewed in the Explorer under Reposi t or y. However, there are additional file systems used by the
IDE which are mounted at startup and hidden. All mounted file systems, including hidden ones, are
visible in the Explorer under Proj ect Settings / Repository settings. Using the
context menus and their property sheets, you can hide, unhide, or reorder them, control their
behavior, etc.

Tip: Once a new file system has been mounted, it is equivalent to having added the archive or
directory to the class path accessible by the IDE. The mounted packages and classes are
immediately available, and can be edited, compiled, run, etc.

Mounting file systems correctly

An important issue to note when mounting new file systems is the point at which you mount them.

136

Chapter 6: Using the IDE

In the same way that the class path must contain the correct hierarchy of directories to access the
required packages and classes, the point at which you mount those packages and classes is very
important. For example, mounting a file system from the point C:. \ wor K will not give the IDE
correct access to the package pr oj ect 1 stored as ¢: \ wor k\ mypr oj ect s\ pr oj ect 1. In this
case, this file system should be mounted at C: \ wor k\ mypr oj ect s, so that pr oj ect 1 is the
top-level package.

To mount a new file system

a Right-click on the Reposi t ory node in the Explorer and choose Add Directory... from the
popup menu; or

a Select Tools | Add Directory from the main menu.
A dialog will appear which allow you to choose the directory to mount.

To mount a new JAR or ZIP archive
a Follow the same procedure as for adding directories, except choose Add JAR instead of Add
Directory.

Note: Mounted JAR archives are read-only.

To mount a single file

a Select Open File from the first toolbar or the File menu in the Main Window. A file chooser will
appear which will allow you to browse your file system and select a file, which you can then add to
the Repository. See “Adding a file to the IDE” on page 40.

To remove mounted directories or JAR or ZIP files from the Repository:

a Right-click on the item and select Remove From Repository.

Order of file systems

The order of file systems in the Repository is also significant. If files with the same name and
hierarchy (e.g. conm f 0o/ Foo. j ava) exist in two different mounted directories, the first will be
loaded during execution or debugging, even if you have selected the second one.

To change the order of file systems:

a Right-click on the node of the file system under Proj ect Settings / Repository
Set t i ngs and select Move Up or Move Down from the context menu; or

a Right-click on the Reposi tory Settings node and select Change Order from the context
menu.

Working with packages

Objects stored in the Repository are organized in packages which correspond to file folders. All

137

Chapter 6: Using the IDE

development packages you create when writing an application in Forte for Java are stored in the
Repository, where they can be added, removed, and edited.

When starting a new development project, identify the data path or file system (see above) to use for
your work, right-click on that path, and select New Package from the popup menu. Once you enter a
name for the new package, it appears in the Explorer under the path you have selected. You can
create several layers of packages (meaning packages within packages) in the same way. Deleting these
packages is simple — either choose Delete from the package's popup menu or press the DELETE key
on your keyboard.

Note: When you cut or copy source files and paste them to a different package, the sources' package
declarations are automatically updated to reflect the new package. If you copy and paste a file
to the same package, the pasted copy is automatically given a unique name (which you can
change if you wish, either from the context menu, or by clicking on it in the Explorer to select
it and then clicking again for an in-place rename.

The popup menu commands in the Repository allow a wide range of operations — from creating new
packages to changing properties. The following a is list of menu items that appear in various context
menus.

Table 6: Package Popup Menu Commands

Command Description
Explore from Here Opens a new Explorer window with the selected package as the
root.
Refresh Folder Updates the view, reflecting any changes to files in the folder made
outside the IDE.
Compile Compiles all uncompiled or modified objects in the selected pack-

age, at the selected level in the hierarchy.

Compile All Compiles all uncompiled or modified objects in the selected pack-
age and recursively in all sub-packages.

Build Compiles or re-compiles all objects (whether already compiled or
not) in the selected package at the selected level in the hierarchy.

Build Al Builds all objects in the selected package and recursively in all sub-
packages.

Cut / Copy / Delete / In addition to the standard keyboard commands, Forte for Java

Rename enables cutting, copying, pasting, deleting, and renaming from the

popup context menu.

Paste | Copy Pastes a copy of the object most recently copied under the selected
node.

138

Chapter 6: Using the IDE

Command

Description

Paste | Create Link

Creates a link under the selected node to the most recently copied
object. The object remains stored in the location where it was cop-
ied, but it can also be opened from the node where the link is

pasted.

Paste | Instantiate

Creates a new instance of the copied template (only available when
a template is on the clipboard).

Paste | Serialize

Serializes the instance of the copied JavaBeans object and places it
in the selected package.

Paste | Default instance

Places the default instance of the copied JavaBeans object in the
selected package, meaning that the name of the class is stored and
the class name is provided as the default constructor in the pasted

copy.

New Package

Creates a new, empty package as a sub-folder of the selected pack-
age.

New from Template

Creates a new object in this package, using one of the pre-built tem-
plates available under the Templates node in the Explorer.

Tools | Update Parser Data-

Updates the Java completion database with the classes of the

base selected package, thus making those classes available in addition to
the standard SDK classes when using the Java code completion fea-
ture in the Editor.

Properties Opens a separate Property Sheet window showing properties of the

selected object(s).

Working with objects

While working in Forte for Java Community Edition 1.0, you operate with objects rather than plain
files. Each object represents one or more files on disk. Each object is shown with its own icon and
properties. The object types used in the IDE are:

Table 7: Object Types

Icon Object Type
Package — A package (folder)—on disk or in a JAR or ZIP archive.
-
Java object — Represents one Java source file (. j ava). Its children repre-
sent methods, variables, constructors, and inner classes acquired by pars-
ing the Java source.

139

Chapter 6: Using the IDE

Icon Object Type

Form object — represents one Java source file which can be edited visu-
@ ally in the Forte for Java Form Editor. The two types of subnodes are: 1)

classes with methods, variables, constructors, and inner classes acquired
from parsing Java source; and 2) items representing components on the
form (visual hierarchy).

Class object — represents one Java class without source code. Children
are methods, variables, constructors, and inner classes acquired from Java
reflection.

Serialized prototypes — files with a. ser extension, which are serialized
objects.

HTML object — represents an HTML file.

@ | [e

Text object — represents a text file.

L]

Image object — represents GIF or JPEG images. You can view these
@ with the built-in image viewer.

Three advanced operations can be done with JavaBeans and serialized prototypes. You can:

e Customize them (using the Customize Bean command) and make serialized prototypes from the
customized object.

¢ Copy and paste them into the Component Palette.

e Copy and paste them directly into the Component Inspector (without the need to install them in
the Component Palette first).

There are several ways of creating new objects including selecting the New From Template command
in:

e the Main Window toolbar
e the File menu
* aRepository package’s context menu

See “Creating new objects from templates” on page 148 for more information.

140

Chapter 6: Using the IDE
You can also copy objects from one package and paste them in another using Copy and Paste from the
context menus. There are special paste options for JavaBeans objects.

Objects can be removed using the Delete icon in the Explorer toolbar or by pressing DELETE on the
keyboard.

For each object type, you can access its popup menu which includes:
Table 8: Common Object Commands

Command Description

Open Opens the default viewer for the object type —
usually the Editor window. Also opens up the
Form Editor window and Component Inspec-
tor for visual classes.

View Opens an HTML object in the default applet
viewer.

Compile Compiles selected object(s).

Execute Runs the selected object.

Cut / Copy / Paste / Delete / Rename Standard clipboard-style operations.

New | Method (or Constructor, Initializer, Variable, | Creates a new element (of the type selected in
Inner Class, Inner Interface) the submenu) in the selected class or source
file. These commands are available on the
popup menu for the relevant category node
(e.g. Fi el ds)

New | Property Invokes the New Property Pattern dialog for
creating a new JavaBeans property for the
selected bean.

Tools | Create Group Create a group (object composed of links to
one or more files, allowing you to access them
from the same place in the IDE). See “Group”

on page 150.
Tools | Add to Component Palette Add selected object to the Component Palette.
Tools | Synchronize Force synchronization of the selected source

file with the interfaces it implements.

Save as Template Publishes the selected object as a template for
future use.
Properties Opens a property sheet showing properties of

selected object(s).

141

Chapter 6: Using the IDE

Runtime

The second major grouping in the Explorer hierarchy is Runt i me. Settings under the Runt i me
node display runtime information for execution (executed processes) and debugging (breakpoints,
thread groups, and watches), as well as any external services as provided by extension modules and
their connection to the IDE.

Processes

The Pr ocesses node lists all processes currently being executed within the IDE. The popup menu
for each of these items contains just one element: Terminate Process. This allows you to force
termination of a process.

This view is mirrored by the Execution View.

Debugger

During a debugging session, the Debugger shows individual watches, threads and breakpoints. By
right-clicking on Breakpoints or Watches, you can also add a new breakpoint or watch.

There's a detailed description of the Debugger in “Debugging Java classes” on page 49.

Project Settings

This main node comprises all of the IDE system settings that can be set for a project. These include
Repository settings, internal and external compiler configuration, Debugger settings, window
settings, external browser or applet viewer configuration, and much more. You can view and edit the
various options for the selected Project Settings item on its property sheet. As in the Repository,
context menu items such as Customize Bean, Copy, and Paste are available for many of the Property
Settings nodes.

Changes made to Project Settings are automatically saved when you exit the IDE. To save changes
without closing the IDE, select File | Save Settings from the main menu.

Note: The Projects module allows you to group files into projects and to have a different set of
Project Settings for each project. The Save Settings command is thus replaced by the Save
Project command in the Project menu. Otherwise, Project Settings apply universally.

Below are descriptions of each item in Project Settings.

Repository Settings

Repository Settings lists all mounted file systems. You can customize the appearance and

142

Chapter 6: Using the IDE

behavior of file systems that are currently mounted — local directories as well as JAR and ZIP
archives. If a new file system is added in the Repository, it automatically appears as one of the items in
the Repository Setti ngs tree. You can use the context menu on the Reposi tory Settings
to add new file systems and re-order current file systems. See “Repository” on page 136 for more
information.

On the property sheet, you can hide file systems or make them read-only. Under the Capabilities tab
on the property sheet, you can disable the IDE from performing certain tasks on the file system
(searching for sources to compile, searching for classes to execute, searching for classes and sources
to debug and searching for HTML pages with documentation). These properties are of particular
interest if you want to mount the Java 2 SDK itself and debug it. You can set the conpi | e property
on the SDK file system to Fal se to prevent the IDE from trying to compile it.

Tip: Capabilities settings apply to entire file systems. However, if you would like to keep individual
sources in a file system from being compiled, executed, or debugged, you can change the
source's Conpi | er , Execut or , or Debugger property (under the Execution tab of its
property sheet) to (do not ...) toaccomplish this.

Debugger Settings

The Debugger Settings property sheet contains various settings allowing you to choose whether to
automatically have classes compiled before debugging, whether the Editor should track the current
position of the Debugger, which workspace to use when debugging, etc. The Expert tab contains
various path settings and the Cl assi ¢ setting (which should be set to Tr ue if HotSpot is installed.

Editor Settings

The Editor Settings property sheet gives you broad control over the behavior of the Editor and
appearance of files displayed in the Editor window. You can set key bindings, make abbreviation lists,
use the color chooser to customize foreground and background colors for different types of text,
choose caret type, etc. Under the Edi t or Opt i ons node are three subnodes, representing types of
files that can be edited in the Editor: HTML Edi t or, Pl ai n Edi t or ,and Java Edi t or. These
three subnodes each have separate property sheets, allowing you to make distinct customizations for
each type of Editor. For a description of all of these settings, see “Editor Settings reference” on
page 182.

Execution Settings
The Execution Settings property sheet gives you the option of clearing the Output Window when

executing, having separate Output Window tabs for each execution, and automatically compiling
source before execution. You can also choose the workspace used when running applications.

143

Chapter 6: Using the IDE

Form Objects

The Form Objects settings affect the appearance of the Form Editor window during design time,
code generation settings, etc.

HTTP Server

The HT'TP Server property sheet controls the built-in HT'TP (Hypertext Transfer Protocol or
“Web”) server. Among other things, you can establish the host, determine access to the server, and
change the port.

Java Elements

These settings control the display names of element nodes in the Explorer. You can enter a
combination of plain text and substitution codes. For example, if you enter: cl ass {n} in the

Cl asses property, a class called MyCl ass will be represented as cl ass MyCl ass in the Explorer
hierarchy. See “Java Elements settings reference” on page 187 for a complete list of the substitution
codes.

Java Sources

The Java Objects settings allow you to enable or disable external compilation, set the source parser
delay, and set a strings table.

The strings table is a list of substitution keys for templates. When the key appears in a template
(marked by an underscore on each side of the substitution key in the template), the string assigned to
the key appears in place of the key in any objects created from that template.

For example, the USER substitution key is assigned your user name. If a template has the key _ USER _
placed anywhere in the text, your user name will appear in place of _USER _ in any object created
from this template.

The Java Sour ces node also contains the Sour ce Synchr oni zat i on subnode where you can
enable or disable the source synchronization feature as well as set its return mode.

Object Browser

The sole property for this node allows you to set custom package filters for use in the Object
Browser. (You can also do this from the Object Browser window).

Open File Server

The property sheet for this node allows you to configure the server that listens to open requests if

144

Chapter 6: Using the IDE

you use the IDE as an external viewer or editor. See “Opening files from external processes” on
page 157.

Output Window

These settings control the colors and fonts used in the Output Window.

Print Settings

These settings control the appearance of files printed from the Editor. From the Pri nt Set ti ngs
node, you can modify header, footer, line wrapping, and line ascent correction properties for
printouts of all Editor files. On the property sheets for each of the three subnodes (Java Edi t or,
Pl ai n Edi tor,and HTML Edi t or), you can set line numbering and specify detailed background
and foreground coloring for different types of text within the files.

Property Sheet

Here you can set the appearance and behavior of the Property Sheet.

System Settings

On the System Settings property sheet, you can set the look and feel of the IDE, choose whether or
not to have the IDE prompt you to confirm deletions, and select whether to show tips on startup.
There are also settings for proxy port and proxy server, which you can set if you need to use a proxy
server for HTTP or FTP connections with the Web Browser and Update Center. If you want to use a
proxy, you must also set the Use Pr oxy property to Tr ue.

Workspaces

Under Wor kspaces are nodes for every workspace. Under these nodes are subnodes showing the
windows in each workspace. Since the configuration of each workspace is updated whenever you
open or close a window within that workspace, these subnodes also change to reflect the windows
that are currently part of that workspace. You can also configure workspaces and set up new ones in
the Explorer. See “Customizing workspaces” on page 156 for more information.

Compiler Types

Here you can set specific configurations for each type of compiler type (the actual system command
that is invoked when you compile an object, which includes the path to Java, the working directory,
and any arguments). In Forte for Java, you can use the default compiler types of each category (e.g.
internal compilation and external compilation), modify the default compiler types, or write new ones.
You can then associate any of your classes to one of these compiler types if the default compiler type

145

Chapter 6: Using the IDE

assigned for that class does not suit your needs.

You can also access the custom property editor for compiler types from the property sheet of
individual classes. See “Switching compilers” on page 44 and “Adding and modifying service types”
on page 72 for more information.

Executor Types

Here you can set specific configurations for each type of “executor” (the actual system command that
is invoked when you execute an object, which includes the path to Java, the working directory, and
any arguments). You can use the default executors of each category (external, internal, and applet
execution), modify the default executors, or write new ones. You can then associate any of your
classes to one of these executors if the default executor assigned for that class does not suit your
needs.

There is a node for each type of executor (such as Ext er nal for stand-alone applications,

Thr eadExecut or for internal execution, Appl et Execut i on, and others for modules such as
RMI, JSP, etc.) and under these nodes are listed the executors themselves (first executor for each type
is labelled Def aul t).

You can also access the custom property editor for executors from the property sheet of individual
classes. See “Configuring external executors” on page 47 and “Adding and modifying service types”
on page 72 for more information.

For Applet Execution, you can modify the Ext er nal Vi ewer property. It is not possible to modify
the Thread (internal) executors.

Debugger Types

Just as with Compiler Types and Executor Types, you can make custom configurations for debugger
types (the actual system command invoked when you debug an object, including the path to Java, the
working directory, and any arguments). You can use the default debugger types of each category (e.g.
standard debugging or JPDA debugging), modify the default debugger types, or write new ones. You
can then associate any of your classes to one of these debugger types if the default debugger type
assigned for that class does not suit your needs.

You can also access the custom property editor for debugger types from the property sheet of
individual classes. See “Setting the debugger” on page 54 and “Adding and modifying service types”
on page 72 for more information.

Global Settings

The Global Settings govern the overall look, content, and performance of the IDE, regardless of the
project you are working on.

146

Chapter 6: Using the IDE

Actions

The action pool under Act i ons in the Explorer hierarchy stores all actions (commands) that are
available in the IDE, most of which (but not all) are already represented in the menus and toolbars.
Since you cannot delete actions from the action pool, this gives you the freedom to remove whatever
items you want from the menus and toolbars without permanently removing them from the IDE.
You can add actions to the main menu and toolbars by copying them from the action pool and
pasting them to G obal Settings / MenuorG obal Settings / Tool bars.

Menu

Under Menu, you will find various customization settings for the menus on the Main Window and all
of their elements. Under the Menu node, you will find settings for each menu on the Main Window
menu bar, including Fi | e, Edi t, Bui | d, Debug, Tool s, W ndow, and Hel p. Under these are
subnodes for the menu items and any submenus. You can add, remove, and customize commands for
each menu and menu item. You can also change the order of the menu items, enable or disable them,
and insert separators.

Toolbars

Under Tool bar s, you will find various customization settings for the buttons of the toolbars on the
Main Window and all of their elements. You can add, remove, and customize commands for each
toolbar button. You can also change the order of the toolbar items, enable or disable them, and insert
separators.

Startup

Here you can insert classes that the IDE will run at startup. Classes that set general keyboard
shortcuts are stored here. Internal execution is usually required for startup classes.

Templates

Here you will find the standard set of templates, in several categories: AWTFor s, Cl asses,

Di al ogs, Swi ngFor ms and Ot her . Each category contains several templates for creating new
objects. See “Using templates” on page 148. You can also create your own categories and templates —
see “Creating your own templates” on page 150 — and modify existing templates (including their
property sheets).

Object Types

Under this node, you can change the order of the object types (loaders) and customize their
properties. Each loader recognizes specific types of files (usually by their extension) and groups them

147

Chapter 6: Using the IDE

with similar files as they are loaded. This affects where new objects that can fall under multiple object
types are placed in the IDE (and ultimately how they are handled) since they are automatically
dropped into the first category that they match with when they are imported into the IDE.

Important:In some cases, the order is crucial: e.g. forms objects must come before Java source
objects, which must come before classes objects. Only experts should modify these settings.

For some object types, such as text, image, HTML, and class objects, you can set the extensions that
the loader recognizes (under Ext ensi ons on the object type’s property sheet).

Modules

This node lists all of the modules currently installed in the IDE. The property sheets shows their
name, version numbers, and whether they are enabled.

Component Palette

In the Component Palette section of the Explorer, you can add, remove, move, change the order of,
or edit components. From a component's popup menu, you can move it up or down, cut, copy,
delete, or set properties. Some items have an | s Cont ai ner property, which, when set to Tr ue,
means that other components can be added to that component in the Form Editor.

Bookmarks
This node holds all of the bookmarks (URLSs) that appear under Help | Bookmarks in the main menu.

Using the context menus, you can add, remove, move, change the order of, or edit bookmarks, as well
as create sub-folders to organize them.

Using templates

Templates are a powerful IDE tool. You can use them to create new objects, which then can be used
as a basis for creating more complex objects. Java components such as Swing and AWT containers are
one type of template. There are also various templates for classes, dialogs, and other objects such as
HTML files, text files, and bookmarks. Even “empty ” classes have templates. You can also create
your own templates.

Creating new objects from templates

You can create a new object from a template in one of the following ways.

148

Chapter 6: Using the IDE

To create a new object from a template from the Main Window:

1 Choose New from Template from either the toolbar or the File menu. The Template dialog with
tabs for different groupings of templates will appear. The default categories are AWTForms,
SwingForms, Classes, Dialogs, and Other.

2 Click on a tab to select the category, click on an icon of one the individual templates in that
category, and then click OK (or double-click the icon).

3 The Instantiate Template will appear on the screen with a combo box containing a list of all
selectable file systems in the Reposi t or y and a tree of all packages in the root directory (default
package) of the selected file system. Select the file system from the combo box and then the
package where you want the object to be created, fill in the Object Name field, and click OK.

To create a new object from a template from the Repository or Object Browser

1 In the Explorer's Reposi t ory or the Object Browser, select the package where you want to
create the new object, open its popup menu, and select a template under New from Template.

2 In the Instantiate Template dialog that appears, enter the name of the new object and click OK.

It is also possible to create new objects by double-clicking on the template itself, either under
G obal Settings / Tenpl ates or under Reposi t ory (if the object has been set as a
template there).

You can also create an object from a template by copying the template (using the Copy command
from the Edit menu or toolbar, context menu, or keyboard shortcut) and then selecting Paste |

Instantiate.

After the new object is created, the Editor will open for this object if the object supports editing. (For
example, no editor is available for Class objects.)

Other templates

These templates are all found under the Other category.

Package

A package for storing objects. Creating an object from this template is equivalent to selecting the New
Package command.

Bookmark

Selecting this template automatically creates a bookmark with the URL http://www.netbeans.com/
and opens up that web page in the default Web browser.

To edit the URL in a bookmark:

149

Chapter 6: Using the IDE

a In the Explorer, right-click on the bookmark and select Edit URL... in the popup menu.

A dialog will appear prompting you to enter the new URL.

Group

A group is a cluster of aliases for files somehow related to each other. It is particularly useful if you
want to simultaneously work on files located in separate parts of the IDE. The template itself is
“empty”’. Once you create an object from the template, you can “fill” the object by pasting links from
it to other files. You can also save such a group as a new template.

To add a file to a group:

1 In the Explorer, select an object you would like to add to the group and select Copy from the
context menu.

2 Right-click on the group’s node and select Paste from the context menu.

HTML

An HTML file.

Text

A plain text file.

Creating your own templates

In Forte for Java Community Edition 1.0, any object can be used as a template. There are two ways to
set an object as a template:
To set an object as a template:

1 Select the desired object in Reposi t ory (under Explorer) and select Save as Template from the
popup menu.

2 In the Save as Template dialog that appears, select the template category where you want the new
template placed.

Or:

1 Select the desired object in Reposi t or y and change its Template property to Tr ue in the
property sheet. You can also copy this object to a template category under the Tenpl at es node;
this will make the object visible in the window that appears when the New command is chosen on
the menu ot toolbar.

150

Chapter 6: Using the IDE

2 If you want the new template visible in the menus and dialogs used for creating objects from
templates, copy it to a template category under the @ obal Settings / Tenpl at es node in
Explorer.

The difference between a template and a normal object is only in what is done when you double-click
on it in the Explorer. For a plain object, a default Editor window is opened (if available); on
templates, a dialog appears allowing you to create a new object from the template.

If you want to open the Editor on a template, choose Edit from the template's popup menu.

Modifying existing templates

You can also modify existing templates. This might be particular desirable if you generally work with
non-default service types (for compilers, executors, and debuggers). You can modify the content of a
template in the Editor and the properties of a template on its property sheet.

To modify the contents of a template:

a Right-click on the template in the Explorer and select Open in the Explorer. (The IDE’s set of
default templates can be found under the Tenpl at es node of the Global Settings tab, though it is
also possible to store templates in the Repository.)

To modify the properties of a template:

1 Select the template in the Explorer (usually under the Tenpl at s node under Global Settings —
see above.

2 Open its property sheet and make the changes you desire.

Tip: If you want to make the same change to multiple templates (e.g. switch all of them to JPDA
debugging), you hold down the CTRL key and select multiple template source files. Any
changes you then make on the property sheet will apply to all of the selected templates.

Customizing the environment

Customizing menus and toolbars

You can organize all menu and toolbar commands in the IDE to your preferences so that you have
quick and easy access to them. From a customization point of view there are only minor differences
between the menu and toolbars, because they are both used as generic containers to visually display a
list of commands.

151

Chapter 6: Using the IDE

Changing commands in menus and toolbars

You can add and delete existing commands on the menus and toolbars using clipboard-style
operations.
To add a new command to a menu or toolbar:

1 Select the command in the G obal Settings / Actions hierarchy in the Explorer and
copy it (using Copy from the Edit menu or toolbar, the node’s context menu, or CTRL+c).

2 Under G obal Settings / Menu (ord obal Settings / Tool bars), select the
subnode for the menu or toolbar under which you would like to place the command.

3 Select Paste | Copy from either the Edit menu or context menu.

To move a command to a different menu or toolbar:

1 Select the command you want to move in the G obal Settings / Menu or G obal
Settings / Tool bars hierarchy in the Explorer and cut it (using Cut from the Edit menu or
toolbar, the node’s context menu, or CTRL+x).

2 Under G obal Settings / Menu (ord obal Settings / Tool bars), select the
subnode for the menu or toolbar under which you would like to place the command.

3 Select Paste from either the Edit menu, the Edit toolbar, or context menu (or use the CTRL+v

keyboard shortcut).

Note: If you delete a command supplied with Forte for Java from the default menus or toolbars, it is
not completely deleted from the IDE. You can restore a command to a menu or toolbar by
copying it from G obal Settings / Acti ons (where all available commands are stored)
and pasting it to a menu (listed under G obal Settings / Menu) or toolbar G obal
Settings / Tool bars).

To group related menu commands with a separator:

1 Right-click on the desired parent container under G obal Settings / Menu in the Explorer
and select the New | Menu Separator command from the context menu.

2 Enter a name for the separator in the dialog that appears and click OK.

3 The menu separator will appear as the last item in the menu.

To group related toolbar commands with a separator:

1 Copy one of the separators in the list of menu items under one of the subnodes of G obal
Settings / Tool bars.

2 Right-click on a toolbar node under G obal Settings / Tool bars and select Paste | Copy
from the context menu.

3 The menu separator will appear as the last item in the menu.

To change the order of commands within their parent container:

a Select the command you want to move, and move it using the Move Up or Move Down command in

152

Chapter 6: Using the IDE

the popup menu; or

m/

Select the parent container and choose Change Order from its popup menu. A dialog will appear
which will allow you to rearrange the commands by dragging and dropping with the mouse or by
using the Move Up and Move Down buttons on them.

Tip: Each menuitem may also have a keyboard accelerator — a letter or digit underlined in the item
itself which enables you to select that item by pressing the appropriate key on the keyboard
instead of dragging the mouse to it. This letter or digit is marked by & in the Name property
of the item.

Creating new menus and toolbars

You can also create new menus and toolbars in the IDE.

To create a new menu:

1 Right-click on the G obal Settings / Menu node (or on the @ obal Settings /
Tool bar s node if you are adding a toolbar), and select New | Menu from the context menu.

2 In the New Menu dialog that appears, type the name of the new menu and click OK.

To create a new toolbar:

1 Right-click on the G obal Settings / Tool bars node and select New | Toolbar from the
context menu.

2 In the New Toolbar dialog that appears, type the name of the new menu and click OK.

Dragging toolbars

The Main Window toolbars can be managed with mouse operations and context menus directly in
the Main Window.

To move a single toolbar:

pY

a Click on the “handle” on the left side of the toolbar (marked by two light-colored vertical bars)
and drag it with the mouse.

To move consecutive toolbars simultaneously:

a Right-click on the “handle” of the left-most of the toolbars and drag it with the mouse. That
toolbar and all toolbars to its right will be moved.

To switch toolbar rows:

pY

a Hold down the CTRL key, click on the “handle” of a toolbar and drag the toolbar up or down. All
toolbars in that row will move in the direction you are dragging (trading rows with the toolbars
previously in the row you have dragged to).

153

Chapter 6: Using the IDE

Toolbar context menu and toolbar configurations

There is also a context menu on the Main Window which you can use to manage toolbars. You can
access this context menu by right-clicking on any empty space in the toolbar area of the Main
Window. The context menu is divided into three parts:

. a list of available toolbars
. a list of toolbar configurations
. the Save Configuration command

The available toolbars are listed with checkboxes. By checking and unchecking these items, you can
control which toolbars are displayed in the Main Window.

The toolbar configurations are shown with radio buttons, allowing you to check the configuration
(group of toolbars and their positions) you want. By default, there are two configurations. The
Standard configuration includes the Debug toolbar, which contains only a selection of debugging
commands. The Debugging has the DebugFull toolbar with all Debugger commands. By default, the
Running and Debugging workspaces both use the Debug toolbar.

The save Configuration command allows you to save the current configuration of toolbars and create
a name for it (thus creating a new configuration).

You can set the toolbar configuration separately for each workspace.

To set a toolbar configuration for a workspace:

1 Select the node for the workspace under Proj ect Settings / Wrkspaces in the
Explorer.

2 Open up the workspace’s property sheet by right-clicking and selecting Properties from the
context menu or selecting the Toggle Property Sheet icon on the Explorer toolbar.

3 For the Tool bar confi g property, select the configuration from the drop-down list.

Customizing shortcuts

Keyboard shortcuts offer an alternative method of performing operations for users who prefer the
keyboard to the mouse. These are also useful for frequently-used commands, when a single keystroke
is much faster and more efficient.

In Forte for Java, shortcuts are stored in the Keys class run at startup. You can find and edit this class
in the Explorer under G obal Settings / Startup.

154

Chapter 6: Using the IDE

Customizing the Component Palette

You can also customize the Component Palette. Under G obal Settings / Conponent
Pal et t e you can find the current Component Palette categories. By expanding a category node, you
can view a list of all components in that category.

To create a Palette category

1 Right-click on the Conponent Pal et t e node and select New Palette Category from the popup
menu.

2 Enter the new category name in the dialog and click OK.

After clicking, the new category will appear as the last item in the Explorer listing, and a tab for
the new category will appear in the Component Palette.

Standard clipboard operations are available at each level of the Explorer's Conponent Pal ette
hierarchy. Individual components can be cut, copied, and pasted between component categories. For
example, you can copy the components you use most to a new category for quick and easy access.
You can also cut, copy and paste component categories.

Component categories can be renamed—either by selecting Rename on the popup menu or using
in-place renaming in the Explorer.

It is also possible to customize the ordering of component categories and the components within a
category.

To move a component category

a Right-click on the category node and select Move Up or Move Down from the context menu; or

a Right-click on the Conponent Pal et t e node and choose Change Order from the context menu
to invoke the Customize Order dialog, which lists all of the categories, has Move Up and Move
Down buttons, and also allows you to re-order items by drag-and-drop.

To change the order of a component within a category

a Right-click on the node for the component and select Move Up or Move Down from the context
menu; or

a Right-click on the node of the component’s category and choose Change Order from the context
menu to invoke the Customize Order dialog.

To remove a component or component category from the Component Palette

a Right-click on the node for the component or the category and select Delete from the context
menu; or

For information on adding JavaBeans to the Component Palette, see “Adding JavaBeans to the IDE”
on page 113.

155

Chapter 6: Using the IDE

Customizing workspaces

Workspaces are entirely customizable via the Wor kspaces node under Pr oj ect Setti ngs in the
Explorer. Expand Wor Kspaces to see a list of current workspaces. These workspace nodes can in
turn be expanded to see a list of currently open windows on each workspace.

Each level of this hierarchy can be cut, copied and pasted, using commands on either the popup
menu or the Edit menu of the Main Window. Existing workspaces can be renamed, again via the
popup menu, the workspace's property sheet, or using in-place editing of the name in the Explorer.

Workspace clipboard operations act recursively: copying a workspace copies all windows present on
that workspace. If you then paste the new workspace to the workspace hierarchy, these windows are
copied to that new workspace.
To create a new workspace:
1 Right-click on the root Wor kspaces node under Proj ect Settings and select New
Workspace from the popup menu.
A dialog will open allowing you to specify the name of the new workspace.
2 Type your name and click OK.

The new item will appear in the given tree in the Explorer and immediately be displayed on the
Main Window.

If you need to expand the workspace tab area on the Main Window to see your new workspace, click
and drag the workspace tab divider to the right. If there are more workspaces than are visible in the
workspace tab area, left and right scroll buttons will be displayed allowing you to scroll through all
available workspaces.

To add windows to the new workspace, you can either:

a Select the workspace by clicking on its tab in the Main Window and then open up the windows
that you want to be on that workspace from the Windows menu or toolbar; or

a Under d obal Settings / Workspaces in the Explorer, copy windows from other

workspace nodes and paste them to the new workspace.

Note: Only the first option works if you want to add a window not already in a workspace to the
new workspace.

You can also customize which workspace the IDE automatically switches to when you start
debugging or start execution.
To set the workspace the IDE switches to for debugging:

1 Under Proj ect Settings in the Explorer, right-click on the Debugger node and select
Properties.

2 One of the properties is Wbr Kspace - this determines which workspace the IDE will

156

Chapter 6: Using the IDE

automatically switch to upon initiating a debugging session. Click on the value of this property
(by default set to Debuggi ng) and select a workspace from the pull-down list of all current
workspaces. You can also set this property to None if you don’t want the workspace to change.

Similarly for execution, you can select which desktop the IDE will switch to when running an
application by setting the Wor kspace property of the Proj ect Settings / Executi on node.

For more information on workspaces, see “Workspaces” on page 130.

Opening files from external processes

Many programs have the ability to associate specific commands with file types (generally by extension
or MIME type), so that the user may select a program to view or edit that type of file. Examples
include the Microsoft Windows desktop / Explorer; assorted file browsers available for Unix and
other operating systems, as well as alternatives on Windows; web browsers; version control systems;
mail programs; etc. If you wish, you can associate the IDE with certain file types, such as Java sources
or property bundles, so that the IDE's editor will be opened when you double-click on the file.

Using the remote launcher manually

To make this work, first try opening a file in the IDE using the remote launcher manually. Open a
command prompt appropriate for your system (e.g. MS-DOS console or Unix shell). Find the JAR
file for the Open File module — probably included in your Forte for Java installation. Now decide on
a file to open and type something like this:

C\jdkl.2.2\jre\bin\javaw -jar "C:\Program
Fil es\fortedj\nmodul es\openfile.jar"
"C:\'My Devel opnent\com nycom Foo.java"

If the IDE is running, you should see Fo0. j ava displayed in the Editor, or the usual mount dialog may
appear. See “Adding a file to the IDE” on page 40. Please specify complete paths to all files to make
sure the same command will work later. The quotes are desirable, especially on Windows, in case you
have any directories with spaces in their names.

Associating the launcher with a type of file

Now you are ready to associate the Open File launcher with some file type in your application. The
details of how to do this will of course vary depending on the system. Generally, you must specify
everything before the filename in the above example command as the “external editor”.

As an example, to associate the IDE with *. j ava files in Windows:

1 Open any Windows Explorer window and select View | Options. Go to the File Types tab.

157

Chapter 6: Using the IDE

2 Sce if there is some kind of entry for Java source files (the name may vary, depending on what
software has been installed) — the entry should specify the file extension j ava. Click New Type...
if necessary; otherwise select the entry and click Edit....

3 In the Actions box, you need at least one action which opens the file in the IDE — you can name it
whatever you like, usually Open. Click New... or Edit... as appropriate.

4 In the resulting action dialog, supply whatever name you like, and give as the application the
command you typed before, but replacing the filename with %i.:

C\jdkl.2.2\jre\bin\javaw -jar "C:\Program
Fil es\forted4j\nmodul es\openfile.jar" "od"

5 Normally you will also click Set Default (it will be bold if it is the default) to make it the default
action for double-clicks.

6 If desired, you may similarly associate other file types — recommended are *. properti es,
* . ser,*.form*.class,*.jar,*. zi p, etc.

Now you should just be able to double-click any of these files in Windows and the IDE will open
them for you. For other systems such as Linux, if you use a file browser (such as from KDE or
Gnome, or a separate browser) you can similarly set up file associations.

Customizing file opening

The Open File launcher has several options which can be used to customize the process of opening
files remotely. You may pass these on the command line to the launcher, for example:

C\jdkl.2.2\jre\bin\javaw -jar "C:\Program
Files\forted4j\nmodul es\openfile.jar" -port 2121 "C\ My
Devel opnent\ com mycom Foo. j ava"

Note that you may also pass multiple files at once to the launcher. The available options are:

- host host nane- or - | P — select an alternate machine to open files on. The specified machine
should be the one running the IDE. You may want to also turn on - nocanon (below). The Open
File server must be configured to accept requests from the machine running the command (below).

-port port-nunber — Select an alternate port to send the Open File requests to (via UDP). By
default, port 7318 is used. The Open File server must be configured to listen on that port (below).

e -canon (default) or - nocanon — when using - canon, any relative file names passed to the
launcher are first converted to an absolute name. If using - host to open files remotely, you may
want to use - nocanon and always specify the correct absolute file name for the machine
running the IDE.

e -wait and-nowait (default) — by default, the launcher sends a message to the IDE asking it

158

Chapter 6: Using the IDE

to open a file, and then immediately exits as soon as the IDE has opened it. (The command will
return a success code (zero on Unix) normally, or an error code (nonzero on Unix) if there was
a problem opening the file.)

Some applications demand that an editor be used to make a specific set of changes to a file and
then finish with it. If this is the case, specify - wai t to the launcher. For example: many version
control systems on Unix provide the option to edit a change log message with an external editor,
of to clean up the results of a merge before continuing with a check-in. If you use such a system,
and set the Open File launcher with - wai t as your external editor, then the file will open in the
IDE as usual, but the launcher will wait to exit. The launcher will not exit until you have made
some changes to the file and saved them. Currently it is not sufficient to just close the Editor
window — you must actually save changes. If you decide you do not want to make any changes,
simply type a space (for example), delete it, and then ask to save (to let the launcher know you
are finished with the file).

- hel p — Display a brief usage message.

Open File Server properties

When using the IDE as an external viewer or editor, you can control the behavior of the server that
listens to open requests. In the Explorer, go to Proj ect Settings / Open File Server and
open the property sheet. You can configure how the server should behave by adjusting the following
properties:

Access Restriction — By default, only open requests from the same machine are honored, so
that other people cannot open files in your IDE. If you set this property to Any Host , any
incoming requests will be honored. (Many local area networks prohibit arbitrary traffic from
entering the network from the Internet, so this is not necessarily as unsafe as it sounds. Also
note that the request is sent via UDP, which most firewalls will not pass.)

Port — You may configure the port the server runs on, which might be necessary if another
program is using port 7318.

Running — You may set this property to Fal se to stop the server, or Tr ue to turn it back on.

Stopping the server only affects using the launcher — it does not affect opening files from within the
IDE using the toolbar button or menu item.

159

Appendix A

Default Keyboard Shortcuts

Table 9: Naming Convention for Function Keys

Name Used For

LEFT, UP, RIGHT, DOWN Cursor arrow keys

BACKSPACE, SHIFT, ENTER, DELETE These keys correspond to common special
keys on most keyboards.

END, HOME, PgUp, PgDown Other cursor repositioning keys

F1,F2, .. F12 Numbered function keys (across the top of the
keyboard)

Modifier keys

Most keyboard shortcuts use one or more modifier keys such as ALT, CTRL, META, and SHIFT,
which you must hold down while pressing the other key in the combination.

Note: These names are conventional, but some systems (especially the X Window System) may use
different names. For example, META is often equivalent to ALT.

Global Shortcut Keys

Context-Sensitive Help

F1 displays help for the selected component in the GUI, such as a window, a pane or a tab in a
window, dialog, Explorer node, etc.

Clipboard
Table 10: Clipboard shortcuts
Press To
CTRL+c Copy current selection into the clipboard
CTRLA+x Cut current selection into the clipboard
CTRL+v Paste current content of the clipboard
DELETE Delete selection

Note: In some cases, it is better to use these shortcuts from popup menus in the Explorer, because
they give further options. For example, when copying a file from one directory to another,
you have the option of creating a duplicate file or creating a link to the original.

Form Editor Shortcut Keys

These shortcuts are useful when you are designing visual forms using the Form Editor.
Table 11: Form Editor shortcuts

Press To
CTRL+F10 Switch to Form Editor window
CTRL+F11 Switch to Editor window
CTRL+F12 Switch to Component Inspector
CTRL+SHIFT+F10 Toggle Test Mode (form specific)
CTRL+SHIFT+F11 Toggle Design Mode (form specific)
CTRL+SHIFT+F12 Toggle Grid (global option)

161

: Default Keyboard Shortcuts

Editor Shortcut Keys

Cursor movements

Table 12: Cursor shortcuts

Keyboard . .
y With no selected text With selected text
shortcut
RIGHT Move cursor one character to the | Deselect text and move cursor
right one character to the right
LEFT Move cursor one character to the | Deselect text and move cursor
left one character to the left
DOWN Move cursor to the next line Deselect text and move cursor to
the next line
UP Move cursor to the previous line Deselect text and move cursor to
the previous line
SHIFT+RIGHT Create selection and extend it one | Extend selection one character to
character to the right the right
SHIFT+LEFT Create selection and extend it one | Extend selection one character to
character to the left the left
SHIFT+DOWN Create selection and extend it to Extend selection to the next line
the next line
SHIFT+UP Create selection and extend it to Extend selection to the previous
the previous line line
CTRL+RIGHT Move cursor one word to the right | Deselect text and move cursor
one word to the right
CTRL+LEFT Move cursor one word to the left | Deselect text and move cursor
one word to the left
CTRL+SHIFT+RIGH | Create selection and extend it one | Extend selection one word to the
T word to the right right
CTRL+SHIFT+LEFT Create selection and extend it one | Extend selection one word to the
word to the left left
PgDown Move cursor one page down Deselect text and move cursor

one page down

162

: Default Keyboard Shortcuts

Keyboard . .
y With no selected text With selected text
shortcut
PgUp Move cursor one page up Deselect text and move cursor
one page up

SHIFT+PgDown Create selection and extend it to Extend selection one page down
the beginning of the next page

SHIFT+PgUp Create selection and extend it to Extend selection one page up
the beginning of the previous
page

HOME Move cursor to the beginning of Deselect text and move cursor to
line beginning of line

END Move cursor to the end of line Deselect text and move cursor to

end of line

SHIFT+HOME Create selection and extend it to Extend selection to beginning of
the beginning of the previous line
page

SHIFT+END Create selection and extend it to Extend selection to end of line
the beginning of line

CTRL+HOME Create selection and extend it to Deselect text and move cursor to
the beginning of end of line beginning of document

CTRL+END Move cursor to the end of docu- Deselect text and move cursor to
ment end of document

CTRL+SHIFT+HOM Create selection and extend it to Extend selection to beginning of

E the beginning of end document document

CTRL+SHIFT+END Create selection and extend it to Extend selection to end of docu-
the beginning of end of document | ment

CTRLA+a Select whole document Select whole document

CTRL+e Remove current line Remove current line

163

: Default Keyboard Shortcuts

Shifting text right/left

Table 13: Shortcuts for horizontally shifting text

'i?é?f::f With no selected text With selected text
TAB Insert tab Shift selection right
SHIFT+TAB Shift selection left
CTRL+t Shift line right Shift selection right
CTRL+d Shift line left Shift selection left

Find shortcuts

Table 14: Find shortcuts

'i?é?f::f With no selected text With selected text
CTRL+f Show Find dialog Show Find dialog and show
selected text as the text to find
F3 Search for next occurrence
SHIFT+F3 Search for previous occurrence
CTRLA+F3 Search for occurrence of the word | Search for occurrence of the
that the cursor is on selected text
ALT+SHIFT+h Toggle highlight search
CTRL+g Show Goto Line dialog
Other shortcuts
Table 15: Miscellaneous shortcuts
Press To
CTRL+w Remove the word before the cursor
F2 Go to next bookmark
CTRLA+F2 Toggle bookmark

164

: Default Keyboard Shortcuts

Press To
CTRL+k Word Match - find previous matching word
CTRLA+I Word Match - find next matching word
CTRL+b Find matching bracket
CTRL+SHIFT+b Select block between current bracket and matching one
SHIFT+SPACE Insert space without expanding abbreviation
ALT+g Go to variable declaration
ALT+utheng Prefix the identifier with get

ALT+u then s

Prefix the identifier with set

ALT+u then i Prefix the identifier with i s

ALT+o Opens the source based on where the cursor is.

ALT+h Scroll the text up so that the cursor moves to the top of the window
while remaining at the same point in the text.

ALT+m Scroll the text so that the cursor moves to the middle of the window
while remaining at the same point in the text.

ALTH+] Scroll the text down so that the cursor moves to the bottom of the win-
dow while remaining at the same point in the text.

SHIFT+ALT+h Move the cursor to the top of the window.

SHIFT+ALT+m Move the cursor to the middle of the window.

SHIFT+ALT+I Move the cursor to the bottom of the window.

ALT+p Go to previous entry in the jump list.

ALT+n Go to next entry in the jump list.

SHIFT+ALT+N Go to the first jump list entry in the next component

SHIFT+ALT+P Go to the last jump list entry in the previous component

ALTH] Select the identifier the cursor is on (or deselect the selected identifier).

165

: Default Keyboard Shortcuts

Special Java Shortcut

Table 16: Java code completion

Press To

CTRL+ENTER Open Java Completion list box with matching entries. (TAB completes
the word and leaves the list box open. ENTER completes the word and
closes the list box.)

Explorer Shortcut Keys

The following items are associated with the Explorer (though the Explorer does not have to be open
to use all of them.
Table 17: Explorer shortcuts

Press To
CTRL+n Create New Object
CTRL+o Open Explorer or activate currently open Explorer window
CTRL+s Save
CTRL+SHIFT+s Save All (unsaved documents)
Delete Delete (selected node)

Window Shortcut Keys

The following are shortcuts for opening or activating specific windows and other window-related

functions.
Table 18: Window shortcuts
Press To
ALTH+0 Explore From Here
ALT+1 Open the selected object’s property sheet in a separate window
ALTH2 Open/activate the Explorer window (same as CTRL+0)

166

: Default Keyboard Shortcuts

Press To

ALTH+3 Open/activate the Editor window (works only if a text or source file is
already open)

ALT+4 Open/activate the Output Window

ALT+6 Open/activate the Execution View

ALT+7 Open/activate the Web Browser

ALT+8 Open/activate the Component Inspector

CTRL+F4 Close the active window (or tab in multi-tab window)

ALT+SHIFT+LEFT | Switch to previous workspace

ALT+SHIFT+RIGH | Switch to next workspace

T

ALT+LEFT Switch to previous tab (in Editor window)

ALT+RIGHT Switch to next tab (in Editor window)

CTRL+u Undock window (undocks currently activated tab in multi-tab window
into a single window)

CTRL+p Print (file in active Editor window)

CTRL+F1 Do Javadoc index search (if Javadoc module is installed)

Build Shortcut Keys

These shortcuts keys mirror commands available in the Build menu.

Table 19: Compile/Build shortcuts

Press To
F9 Compile all out-of-date files under selected node
ALT+F9 Build (compile all files) under selected node
ALT+c Stop Compilation
ALT+E7 Go to Previous Error Line
ALT+F8 Go to Next Error Line
CTRLA+F9 Run

167

: Default Keyboard Shortcuts

Debugger Shortcut Keys

These shortcut keys mirror commands available in the Debug menu.
Table 20: Debugger shortcuts

Press To
F5 Go (Start Debugging)
SHIFT+F5 Finish Debugging
CTRL+F8 Toggle Breakpoint
SHIFT+F8 Add Watch
F7 Trace Into
F8 Trace Over
CTRL+F7 Step Out

168

Appendix B

Default Java Editor

Abbreviations

Java Editor abbreviations are defined in the custom Abbr evi at i ons, under Pr oj ect Setti ngs
/ Editor Settings / Java Editor,which you can edit to add, delete, and change shortcuts.
The following table lists the default Java Editor abbreviations.

Table 21: Java Editor abbreviations

Abbreviation Expands To
sout System.out.println ("
serr System.err.println ("
impa import java.awt.
impb import java.beans.
impi import org.openide.
impj import java.
imps import javax.swing.

: Default Java Editor Abbreviations

Abbreviation Expands To
impS import com.sun.java.swing.
impq import javax.sql
pst private static final
psfi private static final int
psfs private static final String
pstb private static final boolean
Pst public static final
Psfi public static final int
Psts public static final String
Psfb public static final boolean
ab abstract
bo boolean
br break
ca catch (
cl class
cn continue
de default:
el else
ex extends
fa false
fi final
fl float
fy finally
im implements
ir import
iof instanceof
ie interface
nu null

170

: Default Java Editor Abbreviations

Abbreviation Expands To
pr private
pe protected
pu public
re return
sh short
st static
sw switch (
sy synchronized
tr transient
th throws
tw throw
twn throw new
twni throw new InternalError();
twne throw new Error()
VO void
wh while
En Enumeration
Ex Exception
Gr Graphics
Ob Object");
Re Rectangle
St String
Ve Vector
pst printStackTrace();
tds Thread.dumpStack();

171

Appendix C

Main Window Menus

Menus

The following sections provide lists and short descriptions each of the entries on the Main Window
menus.

File Menu

. New From Template — create a new object. The Templates folder will open, allowing a predefined
template to be used as the basis for the new object. Available template categories are: AWT
Forms, Classes, Dialogs, Other, and Swing Forms. See “Using templates” on page 148 for more
information on templates.

. Open Explorer — open a new Explorer window.

* Open File — open a file that is currently in the IDE, or mount a file system to the IDE and open
a file in it.

: Main Window Menus

Object Browser — open the Object Browser window.

Save — save the current object. If there is more than one object currently open in the multi-tab
Editor window, the source in the currently selected tab is saved. If there is more than one Editor
window open (that is, one or more sources have been undocked), the object in the currently
selected Editor is saved. Save is disabled when no modified objects are currently open or the
selected object is unmodified.

Save All — save all current unsaved open objects.

Save Settings — saves all of the current settings. (Settings are saved automatically when exiting the
IDE.)

Print — print the file active in the Editor or selected in the Explorer.

Exit— exit the IDE. You will be prompted to selectively save any currently open unsaved objects,
discard their changes, or cancel. Workspace configurations and other settings changes are saved.

Edit Menu

Undo — undo last action.

Redo — redo last action.

Cut — cut selected object or text to clipboard.
Copy — copy selected object or text to clipboard.
Paste — paste contents of clipboard.

Delete — delete selected object.

. Find ... — find in text.

. Replace ... — replace in text.

. Goto ... — goto line number in Editor window.
View Menu

Explore from Here — open a new Explorer, with the selected node as the root.

Properties — make the Property Sheet window for the selected object the active window (or open
the property sheet).

173

: Main Window Menus
e Explorer Window — make the currently open Explorer the active window (or open it if it is not
already open).

* Editor Window — make the currently open Editor the active window (or open it if it is not already
open).

* Output Window — make the currently open Output Window the active window (or open it if it is
not already open).

* Debugger Window — make the currently open Debugger Window the active window (or open it if
it is not already open).

* Execution Window — make the currently open Execution Window the active window (or open it if
it is not already open).

* WebBrowser — make the currently open Web Browser window the active window (or open it if it
is not already open).

. Component Inspector — make the currently open Component Inspector window the active
window (or open it if it is not already open).

* Look and feel — list of all available look and feels as a submenu with the current one indicated by
a check mark. Selecting one in the submenu switches the whole IDE’s look and feel.

* Workspaces — list of all available workspaces as a submenu with the current indicated by a check
mark. Selecting one in the submenu switches the current workspace.

Build Menu

. Compile — compile selected object. If a folder is selected, compile all sources in that folder that
are uncompiled or have been modified since the last compilation.

* Compile All — recursively compile (compile all uncompiled or out-of-date files in a folder and all
its sub-folders).

. Build — force compilation of all classes, whether current or not.

* Build All — recursively build; build a folder and all its subfolders.

. Clean — delete all . ¢l ass files in the selected package

* Clean All — recursively delete all . ¢l ass files in the selected package and its sub-packages
. Stop Compilation — stop the current compilation process.

. Next Error — jump to the next error in the Output Window.

174

: Main Window Menus

. Previous Error — jump to the previous error in the Output Window.

* Set Arguments — set command line arguments to be passed to an executed application. (May also
be set in the Ar gument s property under the Execution tab of the property sheet of the class).

* Execute — execute the selected object.

Debug Menu

* Go—initiate a debugging session and run the program.

* Connect — connect the Debugger to an already running process.

. Finish Debugger — end the current debugging session.

. Suspend All — Suspend all threads in the Debugger.

. Resume All — Resume debugging of all threads in the Debugger.

. Trace Into — trace into the method the debugger has halted at.

. Trace Over — trace over the method the debugger has halted at.

. Step Out — halt execution after the current method finishes and control passes to the caller.

. Toggle Breakpoint — toggle a breakpoint on or off at the current line. The line will be highlighted
blue when a breakpoint is set.

* Add Breakpoint — add a breakpoint. A dialog will appear prompting you to type where it should it
be set.

. Add Watch — watch a variable.

Tools Menu

* Add Directory — mount a new directory under the Repository.

* AddJAR— mount a new JAR archive as a file system under the Repository.

* Remove From Repository — unmount the selected file system from the Repository.
. Install New JavaBean — install a new JavaBean to the Component Palette.

. Tools | Update Parser Database... — update the Java completion database with the classes of the
selected package, thus making those classes available in addition to the standard SDK classes

175

: Main Window Menus

when using the Java code completion feature in the Editor.

Window Menu

* Clone View — clone the current window. (opens a second view of the current window as a new
tab on the multi-tab window, or in a separate window if the original window is not tabbed).

* Undock Window — undock the current window from the parent multi-tab window. Opens in a
completely separate and independent multi-tab window.

* Dock Into... — dock selected undocked window to one of the choices in the submenu (Output,
Debugger, single, or new multi-tab window).

. Next Tab — flip to the next tab in the multi-tab window.
. Previous Tab — flip to the previous tab in the multi-tab window.

¢ Currently opened windows — all windows currently open in any workspace are listed at the
bottom of the Window menu. Selecting one of these activates that window, or opens it in the
current workspace if it is not already there.

Help Menu

* Browse Online User3 Guide — opens the HTML copy of the User’s Guide in the Web Browser.

* NetBeans Home on the Web — open the browser and connect to the NetBeans website at
http://www.netbeans.com/ If you are using a machine which connects to the internet via a

dial-up modem, this may mean your modem attempts to dial and connect to your ISP. This
depends on your local system configuration.

* Features— display a submenu of modules with separate documentation. If you select a module in
the submenu, user’s documentation will be opened in the Web Browser.

* Bookmarks— display a submenu with bookmarks. If you select a bookmark, the web page
connected with it will open in the Web Browser.

* Tip of the Day... — display the Tip of the Day dialog which opens by default when you run Forte
for Java.

* Update Center — connect with the NetBeans website to automatically install new or updated
modules to your IDE.

* About —display the Forte for Java Community Edition 1.0 About dialog,.

176

: Main Window Menus

Toolbars

There are toolbar items for many of the menu commands as well. You can identify the commands for
each toolbar item by holding the mouse over the icon to invoke its tool tip label.

177

Appendix D

Reference Guide to Project
Settings

Repository Settings reference

The following settings are available for each file system under the Reposi tory Setti ngs node
(the last four appear under the Capabilities tab).

: Reference Guide to Project Settings

Table 22: File System properties

Property Description
Hidden If True, the file system is not displayed in the Repository
Read Only If True, you may not modify any files in the directory.

Root Directory

The root directory of the file system (should be the top of the pack-
age hierarchy.

Valid If True, the file system is valid and usable.
Compile If True, files in the directory can be compiled.
Debug If True, files in the directory can be debugged.
Doc If True, files in the directory.

Execute If True, file in the directory can be executed.

Compiler types reference

Table 23: External Java Compiler service properties

Property Description
Debug If Tr ue, the compiler produces code with debug information.
Must be turned on to debug with source tracking.
Deprecation If Tr ue, the compiler treats use of deprecated methods as errors.
Encoding If Tr ue, character encoding is used in Java sources.

Error Expression

A regular expression in POSIX format describing the format of the
error output of the specified compiler. You can also define a cus-
tom expression, if using a different compiler, and save that setting.
Select one of the pre-defined sets for error descriptors: Sun
javac,M crosoft jvc,orIBMjikes + E.

External Compiler

Path to executable compiler. You can use the custom property edi-
tor to define the process and arguments, using a set of substitution
codes.

Optimize

If Tr ue, the compiler optimizes generated bytecode.

Debug tag replace

String used in command line as debug (e.g. - 9)

179

: Reference Guide to Project Settings

Property Description

Deprecation tag replace String used in command line as deprecation (e.g. - depr ecat i on)

Optimize tag replace

String used in command line as optimize (e.g. - O)

Table 24: Internal Java Compiler service properties

Property Description
Debug If Tr ue, the compiler produces code with debug information.
Must be turned on to debug with source tracking.

Deprecation If Tr ue, the compiler treats use of deprecated methods as errors.

Encoding If Tr ue, character encoding is used in Java sources.

Optimize If Tr ue, the compiler optimizes generated bytecode.
See http://java.sun.com/products/jdk/1.2/docs/tooldocs/solaris /javac.html for more information
on Javac.

Executor types reference

Table 25: External Execution service properties

Property

Description

External Executor

Path to Java launcher. You can use the custom property editor to
define the process and arguments, using a set of substitution codes.

Identifying Name

The name for the executor type by which the classes reference it.

Boot class path

Boot class path on startup.

Class path System class path on startup.
Library path List of modules and special libraries the IDE uses.
Repository path Read-only value filled on startup.

180

: Reference Guide to Project Settings

Table 26: Applet Execution service properties

Property Description

External viewer Applet viewer. You can use the custom property editor to define
the process and arguments, using a set of substitution codes.

Name The name for the applet executor type by which the classes refer-
ence it.

Debugger types reference

Table 27: Applet Debugging and Default Debugging properties

Property Description
Classic Set to True if HotSpot is installed.
Debugger Path to the debugger. You can use the custom property editor to
define the process and arguments, using a set of substitution codes.
Name The name for the debugger type by which the classes reference it.
Boot class path Boot class path on startup.
Class path System class path on startup.
Library path List of modules and special libraries the IDE uses.
Repository path Read-only value filled on startup.

181

: Reference Guide to Project Settings

Debugger Settings reference

Table 28: Debugger properties

Property Description

Followed by Editor If true, the current line (the line on which the debugger is currently
stopped) is visible during debugging (default=true).

Run Compilation Compile sources before debugging.

Show Messages If true, additional messages about the debugger are printed to the
output window. (default=true)

Version Version name of the installed debugger.

Workspace The name of the workspace to which the IDE switches when the

debugger starts, or None if the workspace should not be switched.

Editor Settings reference

Global Editor settings

This setting applies to editing of all types of files (e.g. Java, HTML, plain text) in the Editor.
Table 29: Global Editor Settings property

Property Description
Global Key Bindings Allows you to use the custom property editor for key bindings to
set the key combinations for the available shortcuts

Editor settings by type of editor

Most Editor Settings are divided by type of editor — Plain, HTML, Java and Properties editors in
Forte for Java Community Edition 1.0 (with other types added by extension modules). Even though
the different editors have many of the same properties in common, most of the properties for the
different types of editor are configured separately. The only exception is Global Key Bindings which
is configured globally for all types of editors.

182

: Reference Guide to Project Settings

Table 30: Expert properties (available separately for each editor type)

Property Description
Caret Blink Rate Rate in milliseconds that the text caret blinks.
Insert Caret The type of caret that appears when in insert mode. From the

drop-down list you can choose between line, thin line, and block.

Insert Caret Color Choose a color by clicking on the property and then either selecting
a color from the drop-down list or invoking the custom property
editor for colors by pressing

Italic Insert Caret If True, caret is italic when in insert mode.

Italic Overwrite Caret If True, caret is italic when in overwrite mode.

Line Height Correction Multiplier to adjust height of lines.

Line Number Margin Invokes custom property editor to set up placement of line num-
bers.

Margin Invokes custom property editor to set top, bottom, left, and right
margins.

Overwrite caret The type of caret that appears when in overwrite mode. From the

drop-down list you can choose between line, thin line, and block.

Overwrite caret color Caret color when in overwrite mode.

Scroll Find Insets Specify how much space should be reserved on each side of text
located with the Find command

Scroll Jump Insets Specity for each four directions how much the view should jump
when the scrolling goes off of the screen

Status Bar Caret Delay The delay in milliseconds between the time the caret stops moving
and its position is updated in the status bar

Status Bar Visible If True, the status bar (which shows information such as current
line number, whether the Editor is in insert or overwrite mode, etc.)
is displayed at the bottom of the window.

Table 31: Standard properties (available separately for each editor type)

Property Description

Abbreviations Allows you to use the Abbreviations (Map) custom property editor
to set abbreviations that the Editor will automatically expand to
longer strings when you type them.

183

: Reference Guide to Project Settings

Property

Description

Expand tabs to spaces

If True, tabs in the document are converted to spaces padded to the
same column.

Font Size

If you change this property, the font for all tokens will be set to that
size, regardless of sizes set in the Font s and Col or s property.

Fonts and Colors

Provides access to a custom property editor where background and
foreground colors as well as fonts can be set for various syntax
tokens.

Key Bindings

Clicking on the property and then clicking on the ... button invokes
the Key Bindings property editor, which allows you to add, remove,
and edit key bindings.

Line Numbers

If True, the lines are numbered.

Number of Spaces per Tab

Number of spaces a block is indented when you enter TAB.

Tab size

Number of spaces between each tab stop in the editor. The tab
stops are used when importing files into the editor.

Table 32: Java-only Editor Settings

Property Description
Add Space before Curly If True, a space is added before cutly bracket (i.e {) in generated
Bracket code.
Auto Popup of Java Com- | If True, the Java code completion box automatically appears when
pletion appropriate.

Compound Bracket on Next
Line

If True, compound brackets generated automatically are put on the
line following the previous code

Delay of Java Auto Comple-
tion Popup

Delay in milliseconds before the Java Completion popup appears.

Text types available for coloring

Using the custom color editor for the Font s and Col or s property for the HTML Edi t or,
Pl ai n Edi tor,and Java Editor nodes, you can provide separate background and foreground
coloring for the following types of text in these three types of files:

HTML Editor — argument, block comment, bookmark, default, error, guarded,
highlight-search, incremental-search, int, line number, operator, text selection, status bar, status
bar — bold, string, tag, and text.

184

: Reference Guide to Project Settings

e Java Editor — block comment, bookmark, char, default, error, float, guarded, hex,
highlight-search, identifier, incremental-search, int, keyword, line comment, line number, long
number, method, octal number, operator, text selection, status bar, status bar — bold, string, and
text.

e Plain Editor — bookmark, default, error, guarded, highlight-search, incremental-search, line
number, text selection, status bar, status bar — bold, and text.

Execution Settings reference

Table 33: Execution properties

Property Description
Clear Output Tab If Tr ue, output is cleared from the Output Window before reuse
Reuse Output Tab If Fal se, the IDE creates new tabs in the Output Window for
each execution
Run Compilation If Tr ue, the IDE first compiles before executing a file
Workspace The window to activate when executing a file (Running, Browsing,

Editing, Debugging, or None)

Form Objects reference

The last six properties on this table are listed under the Expert tab on the property sheet.
Table 34: Form Objects properties

Property Description

Event Variable Name The name of the variable generated in the signature of the event
handler method for the event object. For example, “evt ” is the
variable name in “pri vate voi d

buttonlActi onPerfornmed (java.awt.event. Action-
Event evt)”.

Generate Null Layout If True, forms using the Absolute Layout manager will generate
null layouts instead of Absolute layouts

Grid X Size of grid for AbsoluteLayout in the X axis

185

: Reference Guide to Project Settings

Property Description
GridY Size of grid for AbsoluteLayout in the Y axis
Indent AWT Hierarchy If true, the code generated in i ni t Conponent s () is indented for

child components of a container.

Property Editor Search Path | List of packages that are searched for property editors that are to be
used in the Form Editor

Property Editors Explicitly registered editors for certain property types

Show Grid If true, a grid is displayed in the Form Editor when using Absolute-
Layout.

Variables Modifier The access modifier of variables generated for components on the

form (private, package private, protected, or public)

Apply Grid to Position If true, the position of components is snapped to grid (if a grid is
used).

Apply Grid to Size If true, the size of components is snapped to grid (if a grid is used).

Connection Border Color Color of components' selection border during connection mode

Drag Border Color Color of components' drag border during dragging

Selection Border Size Size (in pixels) of the boxes around a component which mark it as
“selected”

Selection Border Color Color of the boxes around a component which mark it as
“selected”.

HTTP Server settings reference

The last two properties in the following table can be found under the Expert tab of the property sheet.

186

: Reference Guide to Project Settings

Table 35: HTTP Server properties

Property

Description

Grant access to

Specifies machines which allows access to the HT'TP server.
Machines are entered as a comma-separated list of IP addresses.

Host Host has two possible settings: Any Host or Sel ect ed Hosts.
Sel ect edHost s restricts access so that only the machine on
which Forte for Java is running and machines specified in that field
are allowed access. (default=Sel ect ed Host s)

Port The port number on which the HTTP server operates.
(default=8081)

Running If Tr ue, the HTTP server is running

Base class path URL Gives access to internal IDE resources.

Base Repository URL Gives access to the contents of the Repository.

Java Elements settings reference

Table 36: Java element properties

Property Description

Classes Display name of classes (using a combination of plain text and sub-
stitution codes)

Constructors Display name of constructors (using a combination of plain text
and substitution codes)

Fields Display name of fields (using a combination of plain text and sub-
stitution codes)

Initializers Display name of initializers (using a combination of plain text and
substitution codes)

Interfaces Display name of interfaces (using a combination of plain text and
substitution codes)

Methods Display name of methods (using a combination of plain text and

substitution codes)

187

: Reference Guide to Project Settings

Table 37: Substitution Codes for the Java Elements properties

Substitution Code

Type of substituted text

{m}

Element’s modifiers (for all elements except initializers)

{n}

Element’s name (for all elements except initializers)

{C}

Name of class with all outerclasses (for classes and interfaces only)

i}

Full name of element with package (for all elements except initializ-
ers)

it}

Type (for fields only)

i

Return type (for methods only)

{s}

Superclass (for classes only)

{c}

Static (for initializers only)

{p}

Parameters with types but not variable names (for constructors and
methods)

{a}

Parameters with types aznd names (for constructors and methods
only)

i

Interfaces (for classes and interfaces only)

le}

Exceptions (for constructors and methods only)

<initializer>

Initializer

Java Sources settings reference

Table 38: Java Sources properties

Property

Description

Automatic parsing delay

Parser auto-start time-out in milliseconds.

Parse class files

If True, class files are parsed for their Source property.

Strings table

Table of substitution keys for templates.

188

: Reference Guide to Project Settings

Source synchronization

Table 39: Source synchronization properties

Property Description

Return generation mode Generate either nothing, an exception, or the string "return null"
when creating a new method declared to return a value.

Synchronization enabled If Fal se, all synchronization is turned off.

Object Browser settings reference

Table 40: Object Browser properties

Property Description

Package Filter Custom property editor available to add, delete, and rename pack-
age filters to the Object Browser

Open File Server settings reference

Table 41: Open File Server properties

Property Description

Access Restriction If set to Any Host , people on other machines can open files in
your IDE. Set to Local Host Only by default.

Port The port the server runs on - by default 7318.
Running If True, the server is on.
Quiet Mode If True, errors from Java about sockets will be suppressed. Useful

on Linux with native threads.

189

: Reference Guide to Project Settings

Output Window settings reference

Table 42: Output Window properties

Property Description

Background Background color of the Output Window

Cursor Background Background color of highlighted text

Cursor Foreground Color of highlighted text

Font Size Size of the characters in the Output Window

Foreground Default text color

Jump Cursor Foreground Text color for lines of text in the Output Window that are linked to
lines in the Editor

Jump Cursor Background Background color for lines of text in the Output Window that are
linked to lines in the Editor

Tab Size The number of spaces represented by a TAB stroke

190

: Reference Guide to Project Settings

Print Settings reference

Table 43: Print Settings properties — general

Property Description
Line Ascent Correction A multiplier to adjust the spacing between lines
Page Footer Alignment Options: LEFT, CENTER, and RIGHT
Page Footer Font Has a custom property editor available allowing you to set font

face, style, and size.

Page Footer Format You may set the footer with a combination of text and the follow-
ing tags — {0} for page number, {1}for date, and {2} for file name.

Page Header Alighment Options: LEFT, CENTER, and RIGHT

Page Header Font Has a custom property editor available allowing you to set font
face, style, and size.

Page Header Format You may set the header with a combination of text and the follow-
ing tags — {0} for page #, {1}for date, and {2} for file name.

Wrap Lines If True, lines are wrapped.

Table 44: Print Settings properties — by individual Editor type

Property Description
Print Fonts and Colors Provides access to a custom property editor where background and
foreground colors as well as fonts can be set for various syntax
tokens.
Print line numbers If True, line numbers appear in printouts.

191

: Reference Guide to Project Settings

Property Sheet settings reference

Table 45: Property Sheet properties

Property

Description

Disabled Property Color

The text color of read-only properties

Display Editable Only

Whether to show only properties that are writable or that have a
custom property editor

Painting Style Indicates if properties are shown always as text, preferably as text,
or preferably as graphics.

Plastic Whether to enable animation of buttons in the property sheet to
make the active property more visible

Sorting Mode Sets the criteria for sorting properties on the Property Sheet — by

name, by type, or unsorted.

Value Color

The text color of property values in the Property Sheet

System Settings reference

Table 46: System Settings

Property

Description

Confirm Delete

If Tr ue, a dialog appears to confirm any deletions you make.

Home Page Home page for the internal Web browser
Look&Feel Metal, CDEMotif, and Windows options
Proxy Host Host of the proxy server

Proxy Port Port number of the proxy server

Show Tips on Startup

True/False

Use Proxy

If True, the proxy server is used

192

Appendix E

Actions

This table lists and briefly describes each of the actions available in the “actions pool” under G obal
Settings / Actions.
Table 47: Build Actions

Action Description
Build Force compilation of all objects in selected folder, whether current or not
BuildAll Build selected folder and all sub-folders, recursively
BuildProject Force compilation of all objects in selected folder, whether current or not

(multiple projects are available using the Projects module)

Compile Compile the selected object

CompileAll Compile the selected folder and all sub-folders recursively
Execute Execute the selected object

NextError Jump to the next error in the Output Window
PreviousError Jump to the previous error in the Output Window

SetArguments Set command line arguments to pass to an application

: Actions

Action Description
StopCompile Halt the current compilation process
Table 48: Debugger Actions
Action Description
Add BreakpointAc- Add a breakpoint
tion
AddWatch Add a watch
ConnectAction Connect Debugger to a process in an already running virtual machine
DebuggerViewAction | Make the Debugger Window the active window
Finish Debugger Terminate debugging session
Go Initiate a debugging session
Go To Cursor Go to current line in the Editor
ResumeDebuggerAc- | Resume debugging of the selected threads
tion
StepOut Halt execution after the current method finishes and control passes to
the caller
SuspendDebuggerAc- | Suspends the selected threads in the Debugger.
tion
Toggle Breakpoint Toggle selected breakpoint on or off
Trace Into Trace into the method the debugger has halted at

Trace Over

Trace over the method the debugger has halted at

Table 49: Edit Actions

Action Description
Copy Copy selected object to the clipboard
Cut Cut the selected object, keeping a copy in the clipboard
Delete Delete the selected object
Find Find specified text in Editor
Goto Go to specified line number in the Editor

194

: Actions

Action Description
Paste Paste from the clipboard
Redo Redo undone action
Replace Replace in text
Undo Undo last action

Table 50: Form Actions

Action Description
Componentlnspecto- | Go to the selected component in the Component Inspector
rAction
CustomizeLayoutAc- | Invoke the customizer dialog for GridBag Layout
tion
DesignModeAction Put the Form Editor in design mode
EventsAction Lists events for selected component
GotoEditorAction Go to the line in the Editor corresponding to the selected component
GotoFormAction Go to the selected component in the Form Editor window
InstallBeanAction Install a JavaBean into the Component Palette
PaletteAction Install the Component Palette
SelectLayoutAction Set the layout
ShowGridAction Display a grid in the Form Editor window (for Absolute layout)
TestModeAction Put the Form Editor in test mode

Table 51: Help Actions

Action Description
About Display the About dialog box
BookmarksAction Show the bookmarks submenu
Help Browse the documentation in the web browser

Tip Of The Day

Display the Tip of the Day dialog

195

: Actions

Table 52: System Actions

Action Description
AddDirectory Mount a new file system under the Repository
AddJarArchive Mount a Jar archive under the Repository
CustomizeBean Customize properties of a JavaBean
Exit Exit the IDE
FileSystemAction Invoke the file system submenu for the given module
GarbageCollect Garbage Collect. By default, this item is not installed in any menus or
toolbars
Instantiate Instantiate a class

Move Down

Moves current item down among the parent's children

MoveUp Moves current item up among the parent's children

New Create a new object

NewAction Create a new object using an existing template

Open Open an object

OpenExplorer Open a new instance of the Explorer

Print Print the file active in the Editor or selected in the Explorer
Refresh Refreshes state of a component

RemoveFromReposi- | Unmount an mounted file system

tory

Rename Rename selected object

Reorder Change order of subnodes (subcomponents) of selected item (container)
Save Save current object

SaveAll Save all open objects

SaveAsTemplate Save a copy of the object as a template in the Templates hierarchy
SetDefaultValue Set the default value for the property.

Tools Show the Tools menu (menu-only action)

View View an object (for example, by launching the HTML browser)

196

: Actions

Table 53: View Actions

Action Description
CloseView Close the active window
Customize Invoke a JavaBean's Customizer
EditorWindow Open a new instance of the Editor Window

Execution Window

Open a new instance of the Execution Window

Explore From Here

Open a new instance of the Explorer, with the selected node as the root

ExplorerWindow Open a new instance of the Explorer
GlobalPropertiesAc- | Open a Property Sheet window to display the property sheet for any sub-
tion sequently selected object
LookAndFeel List and switch to Look & Feels
NextWorkspace Switch to the next workspace
OutputWindow Open a new instance of the Output Window
PreviousWorkspace Switch to the previous workspace
PropertiesAction Open the property sheet in a separate window for the selected object
StatusLine Installs the IDE’s status line (available only for toolbars)
WebBrowserWindow | Open a new instance of the Web Browser window
Workspaces List and switch Workspaces
Table 54: Window Actions

Action Description
CloneView Clone the current view
DockInto Dock the current window into a separate window or into a multi-tab win-

dow

NextTab Switch to the next tab in a multi-tab window
OpenedWindows Lists opened windows in the Windows menu (available only for menus)
PreviousTab Switch to the previous tab in a multi-tab window
UndockWindow Undock the current tab from the MultiWindow

197

Symbols
form files 100
A
Accessibility modifiers 62
action pool 147
Applet viewer 48
changing 48
B
bookmarks 148
Build 43
Build All command 43
C
Capabilities 143
Classes
creating 39
Clean All 44
Clean command 44
Cloning windows 134
Command-line arguments 47
Compiler Types
settings 145
Compilers
configuring 44
switching 44
Compiling 43, 44
Build All command 43
Build command 43
classes 43
Compile All command 43
packages 43
Component Palette
customizing 155
settings 148
D
Debugger
Debugger Window 49
setting the debugger 54
settings 143
Debugger Types
settings 146
Debugger Window 127
Debugging 49
breakpoints 50
connecting to a running process 54
initiating a session 53
resuming 53

198

suspending 53
threads 51
watches 52
watches, fixed 52
Deleting .classfiles44
disabling compilation for a class 44
Docking windows 132
E
Editor 42, 122
abbreviations 125
find and replace 125
Java code completion 126
keyboard shortcuts 124
keyboard shortcuts (customizing) 125
navigation 123
settings 143
word match 124
events 101
Connection Wizard 104
event handlers 102
Execution 45
categories 45
disabling 47
executors 45, 46
external execution 45
internal execution 46
setting execution 46
settings 143
Execution Types
settings 146
Execution View 128
Explorer 38, 118, 135
toolbar 119
F
File systems 136
mounting 136
mounting order 137
Form Editor 84, 127
adding components 87
creating forms 86
design mode 100
menu editor 108
real mode 101
reordering components 89
test mode 101
Form Objects

199

settings 144
G
Generated code 99
Global Settings 146
group objects 150
Guarded text 42
H
Help
context help 26
HTTP Server
settings 144
|
Invalid package declarations 61
J
JAR files 137
Java code completion 126
Java Elements
settings 144
Java elements 61
Java Sources
settings 144
JavaBeans Components
adding to the IDE 113
Bean Info 69, 70
Bean Info (regenerating) 71
customizing 71
developing 65
event sets 67
properties 66
properties (indexed) 67
Javadoc
Auto Comment Tool 79
changing directory for documentation 83
Comment dialog 80
generating documentation 82
properties 82
Javadoc search 76
JavaHelp 26
JDesktopPane 112
JinternalFrame 112
JList 112
JScrollPane 111
JSplitPane 113
JT abbedPane 111
Jrable 112

200

K
keyboard shortcuts 154
L
layout constraints 93
layout managers 92, 94
custom 99
GridBag customizer 97
layout properties 92
layouts 91
look and feel 116
M
Main Window 117
Menus 117
customizing 151
settings 147
Modules 134
adding and updating 135
uninstalling 135
Mounting
files 66
Multi-tab windows 132
O
Object Browser 57
context menus 58
filtering objects 57
Members pane 58
Objects pane 57
package filters 59
Packages pane 57
Object Types 147
objects 139
commands 141
Open File
Mounting files 40
opening files from external processes 157
Open File Server
settings 144
Output Window 128
settings 145
P
Packages 137
popup menu commands 138
Parser database 127
Print Settings 145
Process Descriptor dialog 74
Processes 142

201

Proerty Editors
Form Connection 106
Project Settings 142
Properties
synthetic 108
Property editors
custom 90, 121
Property sheet 38, 119
in the Component | nspector 90
pane in the Explorer 120
separate window 120
toolbar 121
R
Repository 136
settings 142
Runtime 142
S
ScrollPane 111
Service types 72
adding 72
configuring 74
Process Descriptor dialog 74
removing 76
Sourcefiles
Javafiles 100
Source synchronization 64
Startup settings 147
System Settings 145
T
Templates 147, 148
creating new objects 148
creating your own 150
Toggle Property Sheet button 119
Toolbars 117
configurations 154
customizing 151
dragging 153
settings 147
U
Undocking windows 132
w
Web Browser 129
Workspaces 130
customizing 156
settings 145

202

Z
ZIP files 137

203

